
Matthew Bunn, Harvard University
Harvard Electricity Policy Group
Boulder, Colorado, 28-29 February 2009

http://www.managingtheatom.org
Public good of low-carbon electricity supply: what role for government?

- Main low-carbon sources of electricity supply are carbon intensive:
 - Nuclear
 - Renewables
 - CO2 capture

- Government considering range of policies to promote adoption
 - CO2 prices or caps
 - Production tax credits
 - Loan guarantees (risk → taxpayers)

Which mixes of policy tools would achieve the objective at lowest net social cost?
Allocation of risk affects the cost of electricity for capital-intensive plants

Example: nuclear plant with a $3,000/kWe EPC cost (total overnight $3500-$4000/kWe), 4-year construction time:

<table>
<thead>
<tr>
<th>Regulated Utility (risk → ratepayers)</th>
<th>Merchant Plant (risk → investors)</th>
<th>Merch., guarantee (risk → taxpayers)</th>
<th>Reg., guarantee (risk → taxpayers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$60.2/MW-hr</td>
<td>$98.5/MW-hr</td>
<td>$64.8/MW-hr</td>
<td>$50.4/MW-hr</td>
</tr>
<tr>
<td>50/50 debt/equity; 6% debt, 12% equity</td>
<td>50/50 debt/equity; 8% debt, 15% equity</td>
<td>80/20 debt/equity; 6% debt, 15% equity</td>
<td>80/20 debt/equity; 6% debt, 12% equity</td>
</tr>
</tbody>
</table>

Estimates from Nuclear Energy Institute economic model; regulated utility assumes 100% CWIP; all figures levelized 2007$

Competitive electricity markets inadvertently suppress capital-intensive low-carbon generation – loan guarantees counteract this effect
Mixing carbon prices and risk allocation to make low-carbon sources competitive

<table>
<thead>
<tr>
<th>Reg. Utility (risk → ratepayers)</th>
<th>Merchant Plant (risk → investors)</th>
<th>Merch., guarantee (risk → taxpayers)</th>
<th>Reg., guarantee (risk → taxpayers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC Coal, CO₂=$0 $54.7/MW-hr</td>
<td>SC Coal, CO₂=$0 $78.9/MW-hr</td>
<td>Assume no SC coal guarantee</td>
<td>Assume no SC coal guarantee</td>
</tr>
<tr>
<td>Nuclear $60.2/MW-hr</td>
<td>Nuclear $98.5/MW-hr</td>
<td>Nuclear $64.8/MW-hr</td>
<td>Nuclear $50.4/MW-hr</td>
</tr>
<tr>
<td>Nuclear competitive if CO₂≥$6/t</td>
<td>Nuclear competitive if CO₂≥$20/t</td>
<td>Nuclear competitive with no-guarantee coal at CO₂=$0/t</td>
<td>Nuclear competitive with no-guarantee coal at CO₂=$0/t</td>
</tr>
</tbody>
</table>

- **Not** intended as prediction of actual costs
 - purely illustrative of effects of risk allocation on carbon price for competitiveness;
 - MIT study found nuclear competitive in merchant base case at \simCO₂=27/t – but estimated prices have increased since then
Unique risks for new nuclear plants

- *Wide range of unique nuclear risks at present* – financing not available on terms in previous slides for first plants
- Technology risk
 - Plant designs that have either never been built anywhere, or have never been built in the United States
 - No new plants built in United States since 1970s, companies and personnel have no recent experience
 - New Finnish plant – first of the EPR design – experiencing large delays, cost overruns
 - Large increase in estimated costs in past 5 years (~100%)
 - 1970s cost overruns bankrupted some builders, led to large defaults, “stranded costs” in move to competitive markets
 - Limited capacity may create competition for supplies, labor, driving up costs (e.g., Japan Steel Works only OECD supplier for large steel forgings – 3-year backlog)
Unique risks for new nuclear plants (II)

- Regulatory risk
 - Untested new NRC combined construction and operating license (COL) approach – how long will it take, will projects be blocked?

- Political risk
 - Positive polls, but political strength of anti-nuclear forces largely untested in recent years
 - Potential long-term spent fuel liability from Yucca Mountain delay (though some in market say availability of low-cost dry cask storage makes this a modest financial factor, though large politically)

- Accidents/terrorism risk
 - Liability limited by Price-Anderson, but still a factor
 - Major accident or nuclear terrorist incident anywhere in the world could make nuclear power projects politically impossible to complete
Congressional responses to date

- **Production tax credits for low-carbon generation**
 - No benefit unless project succeeds, begins generating
 - *Very* helpful for high-cost, low or moderate risk projects (e.g., solar or wind) – not as helpful for high-risk projects (e.g., nuclear)
 - Costly – 1 ¢/kW-hr →~$2B/GWe present value cost to taxpayers over 40-year life (at 90% capacity factor)

- **Insurance for regulatory risks**
 - Specific to nuclear – doesn’t handle other risks

- **Loan guarantees**
 - $38.5 billion in omnibus appropriation, $20.5 billion nuclear
 - Firms receiving guarantee pay “subsidy cost” – in theory, no net costs to taxpayers (though greater portion of risks for taxpayers)

- **Carbon cap and trade, other carbon price mechanisms still being debated**
Loan guarantees -- why shouldn’t this be left to markets?

- With loan guarantees, government effectively providing default insurance – couldn’t market provide that?
 - For nuclear projects in particular, some major firms say unable to assess and price risks – too many unknown factors
 - With uncertainties, market costs of money and insurance would make projects uncompetitive
 - In essence, government taking on unknown risks at below-market rates
 - Market might be adequate for lower-risk technologies – but should nuclear get special treatment?

- Nuclear projects in particular simply too big for even biggest generators to carry on balance sheets
 - Total project costs in range of $6 billion
 - Problem could in principle be solved with investment partners
Some questions for discussion

- What set of policy tools would lead to deployment of low-carbon electricity generation at lowest total social cost?
 - One option: high carbon price (through tax, or cap and trade)
 - Another: loan guarantees plus moderate carbon price
 - Another: carbon prices plus production tax credits
 - Which is better for the overall economy?

- Do loan guarantees inherently distort markets, making non-guaranteed technologies – including efficiency – less attractive by comparison? How damaging is this?

- How much risk of major defaults are the taxpayers being asked to take on with loan guarantees – For nuclear? For solar? For wind? For carbon capture? Is DOE well-suited to calculating this, to set subsidy cost?
Some questions for discussion (II)

◆ Are loan guarantees appropriate:
 – Only to get the first few plants of a new technology built, buying down the first-of-a-kind risks?
 – Indefinitely, for technologies that offer non-monetized public goods? (How do we take into account “public bads,” such as nuclear sabotage or proliferation risks?)
 – Or not at all?

◆ How could loan guarantees be structured so low-carbon technologies could compete to receive them, rather than Congress picking winners (as in recent bill)?

◆ What other policies could governments use to make capital-intensive low-carbon technologies more competitive?
Some questions for discussion (III)

- For nuclear in particular, will we end up, after EPAct subsidies for first few units, with still-uncompetitive plants?

- What policy tools – and in particular approaches to risk allocation – should be applied to get adequate deployment of electricity infrastructure beyond generation?

- Are loan guarantees an appropriate role for the U.S. government in promoting deployment of nuclear and other low-carbon sources in other countries?
 - Guarantees currently available for U.S. exports from Ex-Im
 - Other countries – e.g., France, Russia, Japan – also support their vendors with low-cost financing
 - In this case, “public good” being supported is export-led jobs – guarantees are available whether the project is low-carbon or not