Idiosyncratic assets interconnected markets and arbitrage

Richard P O’Neill
Harvard Electricity Policy Group
March 7-8, 2013

The views presented are the personal views of the authors and not the Federal Energy Regulatory Commission or any of its Commissioners
Market history

- Historically: pre-1990
 - Risks are borne by consumers via their agents (regulators)
 - Weak trading
 - cost-of-service pricing

- Markets: post 1990
 - Market-based rates
 - Risks shared by voluntary contracts
 - Increased trading
Idiosyncratic Bulk Power System Assets

- Sunk costs/Asset specificity
 - 10 years in planning
 - 30-50 year life
 - Location

- Risks:
 - financial,
 - Technical
 - Environmental
 - Market
 - regulatory
History of Colored Swans
twenty years ago today

- **White Swans** (known knowns)
 - Nukes: Half century of 300% cost overruns
 - Natural gas: Half century of price volatility

- **Gray Swans** (unknown knowns)
 - Climate change: what is the cheapest fix?
 - Health: Canceled and retired coal plants
 - Lower Demand: Canceled transmission assets

- **Black Swans** (unknown unknowns: outliers)
 - Shale gas paradigm shift:
 - bridge fuel
 - The bridge is getting longer
Investment decisions to products

- Start with idiosyncratic assets and contracts
 - generation: nuke, coal, natural gas, wind, solar
 - Load: industrial, commercial and residential
 - Transmission assets
- Real power is a mostly homogenous product indistinguishable from who makes it
- other products: reactive power, ramp rate, and capacity
Principles of ISO Market Design

- Maximize benefits to society
 - Demand (value) functions minus
 - Supply (cost) functions
- Distribution of benefits to incent efficient behavior
 - LMP
 - Uplift allocation
 - Capacity prices
- Mitigate market power
 - Bid marginal costs
 - Bid marginal value
ISO Auction Markets

- Market Design for all ISOs
 - Transmission rights
 - day-ahead unit-commitment market
 - Residual unit commitment
 - Real-time market
- Capacity markets: 3 of 7 ISO markets
 - Price-responsive demand/Scarcity pricing
 - Call option for advance planning
- day-ahead and real-time market risk changes from
 - Not having enough power or over contracting to
 - Price volatility, but very liquid ISO markets
 - Clean up the physical infeasibilities from bilateral trading
The ISO Day-ahead and Real-time Markets

- **LMP** is a public uniform price for homogeneous product
 - Quantities are individual (private)
 - almost clears at the ‘law of one price’
 - 95% of revenue transfers are at the LMPs

- **Market Uplift** is a private non-uniform price for non-homogeneous product
 - start-up, reactive power, loss errors
 - Quantities are semi-public (cannot directly assign costs)
 - 5% of revenue transfers; often peanut buttered
 - Need greater differentiation and better cost allocation
ISO Market Approximations

- Linear ‘DC’ model for non-convex AC flows
 - Linear model employs estimated losses
 - No reactive power; fixed voltages
 - Non-optimal topology (network)
- Markets have different time intervals
 - Financial transmission right: month or more
 - Day-ahead market: hourly
 - Real-time market: 5 minute dispatch
- What is the cost of the approximations?
Real-time market

- the non-convex physics presents arbitrage
- Can’t fool mother nature
- Approximations create
 - Greater uplift
 - inefficient LMPs
 - Greater arbitrage opportunities
- Signal for better software and market design
Losses

- Currently estimated because the market model is an approximation
- Day-ahead market with financial market participants
 - discover errors and arbitrage
 - better the price signal and dispatch
 - lower uplift
 - Make money
- Without financial market participants
 - incorrect the price signal
 - greater uplift
Time interval differences

- Financial transmission right (maybe weekly)
 - Monthly intervals
 - Outage for one week
 - What is the best network?
- Day-ahead market
 - Hourly (maybe 15 minutes)
 - No congestion in hour interval
- Real-time market
 - Congestion in some 5 minute interval
 - 5 minute pricing
- Can we shorten the intervals?
Seams

- collision of the ISO markets and contract path markets
- Arbitrage opportunities
- Should we price loop flow?
- Is ACE yesterday’s concept?
- ACE may have been good for
 - Voluntary reliability
 - 100+ control areas
Financial market participants

- Traditional risk management
 - Liquidity: the ability to trade quickly at the efficient price
 - Trade in forward bilateral markets
 - Finance projects

- ISO markets are very liquid

- Arbitrage in ISO markets
 - Check market power in the forward markets
 - Move prices to expected price in the real-time market

- Arbitrage design flaws: Incent fixes?
 - Bad loss estimates: Lower uplift
 - Time intervals
 - Contract path and TLRs
continuous trading via standard bilateral contracts

- Standardized 'bilateral' markets for faster trading
 - WSPP standardized contract
 - EEI Master Contract
 - Provide credit provisions and standard product definitions
 - basic negotiable elements, e.g., price, quantity, location, and duration

- Public exchanges: ICE, NYMEX, Nodal
 - Actual trades
 - Published prices
 - Published quantities

- Indexed pricing
combination companies

- Using the regulated utility as a source of free capital has a long tradition

- Regulated utilities are generally very risk averse with cost pass-throughs
 - Look for a published 'price' that its regulator agrees to
 - Mark bilaterals to 'market' (public exchange)
 - Thin trading on public exchange is ripe for manipulation
ICE

Power Delivered on Thurs., Feb. 21, 2013

<table>
<thead>
<tr>
<th>Hub</th>
<th>High</th>
<th>Low</th>
<th>Wtd Avg Index</th>
<th>No. of Trades</th>
<th>No. of Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mona Off-Peak</td>
<td>$25</td>
<td>$25</td>
<td>$25</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>NYISO G Peak</td>
<td>$105</td>
<td>$105</td>
<td>$105</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Four Corners Peak</td>
<td>$30</td>
<td>$30</td>
<td>$30</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Indiana Hub RT Peak</td>
<td>$34</td>
<td>$34</td>
<td>$34</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Pinnacle 230 Peak</td>
<td>$33</td>
<td>$32</td>
<td>$32</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>COB Peak</td>
<td>$32</td>
<td>$31</td>
<td>$32</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Mead Peak</td>
<td>$33</td>
<td>$32</td>
<td>$32</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>SP15 DA LMP Off-Peak</td>
<td>$35</td>
<td>$35</td>
<td>$35</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Nepool MH LMP Peak</td>
<td>$137</td>
<td>$130</td>
<td>$133</td>
<td>33</td>
<td>17</td>
</tr>
<tr>
<td>Palo Verde Peak</td>
<td>$32</td>
<td>$30</td>
<td>$31</td>
<td>37</td>
<td>17</td>
</tr>
<tr>
<td>SP15 DA LMP Peak</td>
<td>$46</td>
<td>$44</td>
<td>$45</td>
<td>41</td>
<td>17</td>
</tr>
<tr>
<td>PJM WH Real Time Peak</td>
<td>$44</td>
<td>$42</td>
<td>$43</td>
<td>68</td>
<td>33</td>
</tr>
<tr>
<td>Mid C Peak</td>
<td>$30</td>
<td>$28</td>
<td>$29</td>
<td>159</td>
<td>20</td>
</tr>
</tbody>
</table>
Neo-classic financial market participant theory

- Complete markets
- Easy entry and exit
- No transaction costs
- Common knowledge of probabilities
- Risk neutral
- Infinite capital
- Complete liquid markets
- Make no profit
transactions cost financial market participant model

- Incomplete markets
- Transaction costs cause market frictions
- Rogue traders
- Common knowledge of historic information
 - Must exact useful information
 - Short-term asymmetric information
- Take advantage of asymmetric information
 - While it lasts
- Correct market design flaws
- Must have contingent capital collateral to support trading eg, margin calls
Enron et al

- 1990: regulated companies
- Market-based rates for natural gas
- Start a trading arm
 - Frogs becomes Wall Street princes
 - One eyed giants in the valley of the blind
 - Under capitalize trading
- 2001: Princes become frogs
 - Bankrupt or almost bankrupt
- 2008: Constellation (la deuxième partie?)
What are the lessons?

Have we learned the lessons?