Mixed-Integer Programming Solution at the CAISO
Presented to: Harvard Energy Policy Group
December 6, 2007

Mark Rothleder, Principal Market Developer and MRTU
Technical Lead
MIP at the CAISO

As part of its Market Redesign and Technology Upgrade (MRTU), the is implementing Mixed Integer Programming (MIP) Solution

In 2003 CAISO executed a Proof-of-Concept to ensure solution meets performance and solution requirements

Planned implementation date of April 1, 2008
MIP at the CAISO

- Large number of transmission constraints
 - Up to 2000 binding constraint for 24 intervals, 150 contingencies
- Nomograms
 - Simultaneous interface vs. interface limits or interface vs. generation output limits
- Ancillary Service and Energy Co-optimization
 - Decision to procure A/S based on resources constraints
- Dynamic ramp rates
 - Different ramp-rates at different operating levels
- Resource on/off decisions
 - Minimum up time, minimum down time, maximum starts/day
- Forbidden Region of Operation
 - Operating regions can be crossed but not maintained inside
- Energy Limitation Constraints
 - Maximum amount of energy or hours of availability
- Pump/Storage Modeling
 - Decision regarding pumping or generation operational mode
- Constrained Output Generator (COG) (Pmin=Pmax) Dispatch and Pricing
Current vs. Planned Approaches

<table>
<thead>
<tr>
<th>Market Area</th>
<th>Current Approach</th>
<th>Planned Approach</th>
<th>Date of Planned Implementation of MIP</th>
<th>Estimated Annual Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-time market look ahead</td>
<td>LR used for 2 hour look ahead commitment and dispatch</td>
<td>MIP: 2 hour look ahead for dispatch. As long as 5 hours for commitment.</td>
<td>April 1, 2008</td>
<td>~$100,000-$1 million (0.1%-1%1 of 2006 RT Dispatch Costs and RT RMR Costs2: $97 million)</td>
</tr>
<tr>
<td>Residual unit commitment</td>
<td>Procedural based operator judgement advised by a MIP based UC with no network</td>
<td>Run a MIP, Full Network Model based on Residual Unit Commitment after Day-Ahead bid market.</td>
<td>April 1, 2008</td>
<td>~$100,000-$1 million (based on 0.1% - 1% of Total Minimum Load Costs for 2006: $106 million)</td>
</tr>
<tr>
<td>Day-ahead market</td>
<td>Linear Programming: No unit commitment, No Energy Optimization, Allocation of Transmission only using zonal model</td>
<td>Run a MIP based SCUC/SCED, Full Network Model program, Energy and A/S co-optimized</td>
<td>April 1, 2008</td>
<td>~$2.3-$23 million (Assumes an estimated 0.1%-1% reduction of $11.4 billion Energy and Ancillary Service)</td>
</tr>
<tr>
<td>Capacity market</td>
<td>None</td>
<td>Policy being considered</td>
<td>Policy being considered</td>
<td>No Estimate</td>
</tr>
<tr>
<td>Ancillary service market</td>
<td>Linear Programming sequential procured after Transmission Allocation</td>
<td>Run a MIP based SCUC/SCED, Full Network Model program co-optimized with energy</td>
<td>April 1, 2008</td>
<td>~$230,000-$2.3 million (0.1%-1%1 of 2006 A/S costs2 of $234 million)</td>
</tr>
<tr>
<td>planning</td>
<td>Powerflow studies</td>
<td>No immediate plans to incorporate MIP</td>
<td>No immediate plans to incorporate MIP</td>
<td>No Estimate</td>
</tr>
</tbody>
</table>
Facts about the MIP Solution and Testing Observations

- ~35,000 integer variables
- Up to 2000 Binding Constraints for 24 intervals
- DAM 24 hour simultaneous intervals run ~ 1 hour computing time
 - 2 passes, 1 – Market Power Mitigation / Reliability Requirements
 - 1 pass – Integrated Forward Market (Energy and A/S)
 - 1 pass – Residual Unit Commitment
 - 1 pass = 3-4 SCUC-NA Iterations, 1 scheduling run, 1 pricing run
- RT Unit Commitment up to 18-15 minute intervals ~ 12 minutes computing time
 - 2 passes, 1 – Market Power Mitigation / Reliability Requirements
 - 1 pass, Real-Time Unit Commitment and A/S procurement
 - 1 pass = 3-4 SCUC-NA Iterations, 1 scheduling run, 1 pricing run
- RT Dispatch up to 13-5 minute intervals ~ 2.5 minutes
 - 1 pass, Real-Time Dispatch
 - 1 pass = Security Constrained Dispatch
 - 1 scheduling run, 1 pricing run,
- MIP Gap ~ 0.2%-0.5% for 24 hour DA runs, Lower MIP Gaps can be achieved if allowed to run longer
- Observed more constraints enforced sometimes results in faster solution within MIP Gap
Future Market Initiatives That May Leverage MIP Capabilities

- Modeling of Combined Cycle Resources
 - Multiple Start-up functions
 - Start-up decisions of different stages of
- Demand Response
 - Curtailment Decisions
 - Shut-down constraints
 - Linkages between different demand
- Increase number of ramp rates
 - Different ramp-rates at different operating levels
- Enhance Forbidden Region with Hold-Time Constraints
 - Must stay above forbidden region for specified period of time
- Application of Priorities
 - Possible replacement of penalty functions to enforce scheduling priorities (i.e. ETC, RMR, TOR, Self-Schedules....)
- Multi-Day Optimization
 - Improve cross-day unit commitment decision making and avoid unnecessary cycling