Standard Market Design: Maybe?
Good Market Design: Yes!

by

Michael Dworkin, Chair

http://www.state.vt.us/psb/site/mhd.stm

Vermont Public Service Board

May 30, 2002

presented to the

HARVARD ELECTRICITY POLICY GROUP
Standard Market Design Needs
PUC Support

- **SMD #1:** INTRODUCE A DEMAND CURVE
 > Only PUCs can set retail rates

- **SMD #2:** REAL LOCATIONAL MARGINAL PRICING
 > Requires FERC/PUC collaboration

- **SMD #3:** INDEPENDENT TRANSMISSION CONTROL
 > Asset transfers require PUC approvals

- **SMD #4:** EFFICIENT INTRODUCTION OF RESOURCES
 > Siting requires PUC approval or support
Role of RTO/ISO

- RTO/ISO performs two functions:
 - Operational management of transmission grid and supply dispatch
 - Management of wholesale market, as substitute for ‘just and reasonable’ rates

- This is a regulatory role, thus, fiduciary duty MUST be to the public good
Fiduciary Duty of an RTO

- General Public Good (as substitute for ‘just and reasonable’ rates) particularly
 1. Responsibility to the long-term good not just short-term
 2. System reliability and operational efficiency
 3. Efficiently functioning markets (balance bargaining power of buyers and sellers, not just low transaction costs)
Vital Premise for SMD

- The Governance Structure of an RTO or ISO must not be determined by market participants
 - Market participants provide advisory input only
 - Funding not beholden to participants
 - Participants must not have any decisional authority over the market rules
 - Market monitoring must be arm’s length
Promote Infrastructure Investment

- What do investors want?
 - Theory #1 -
 - High probability of moderate returns
 - Barriers to competition
 - Strict enforcement of uniform system of accounts
 - Theory #2
 - Moderate probability of high returns for demonstrated above-average performance
 - Easy entry
 - Whatever accounting safeguards the SEC and FERC tolerate in practice

- Which cluster is more likely to encourage capital investment in vital infrastructure?
Core Issue

- Is transmission an extrinsic “highway” or an alternative to generation and load management resource options?

- “Highway” Treatment
 - May result in future stranded costs
 - Will distort future resource allocation
 - Will hamper development of alternative energy resources
 - Will distort accurate price signals
Transmission Pricing: Cowart’s Efficient Reliability Test

- Cost Causation is the starting principle
 - Otherwise LMP signal is thwarted, siting will be distorted, and resource choice will be unbalanced
- Socialization (uplift) should be disfavored
- Before socializing through tariff uplift
 - Market must be open to demand side as well as supply side resources
 - Proposed investment or standard must be lowest cost (including environmental costs) reasonably available means to correct remaining market failures
 - Benefits from the investment or standard will be widespread and thus appropriate for support through broad-based mandatory payments
Transmission Pricing: Investor Incentives

- Provide long-term incentives for ALL solutions to congestion problems
 - Provide revenue stream for problem-solvers
 - Transmission upgrades eligible for tradable property rights (financial congestion rights) so that investors can capture the value of transmission investments
 - Generation incentive captured in LMP
 - Load response incentive must be comparable
 - Build in incentives for performance
 - Standardization of rates
 - Elimination of congestion
New Resource Planning

- What Regional Functions are Needed
 - Expert evidence for state siting decisions
 - Verify eligibility for regional uplift charges
 - ?? Provider of last resort for essential regional infrastructure needs

- Structural questions:
 - In or out of RTO
 - Participant involvement? State involvement?
New Resource Planning

- Must be free of influence from all market participants including Transmission Owners
 - Otherwise solutions will have no “legitimacy”

- Significant problem with multiple planning horizons
 - Generation faster, transmission slower
 - Needs weighting for unpriced environmental costs
 - Load response is an emerging arena and must be promoted and bolstered until market is fully transformed

- Can we distinguish market-viable “economic upgrades” from “reliability upgrades” seeking uplift support?

- Are capital markets deterred by competition and uncertainty?
Market monitoring is *vital* but insufficient

Good structural incentives are even more important than case-by-case cures:
- Markets need Rules, but
- Rules need Enforcers
New York, et. al. v. FERC

- **FERC Jurisdiction**
 - FERC jurisdiction over *transmission* not limited to wholesale market
 - FERC jurisdiction over *sales* is limited to the wholesale market

- **State Jurisdiction**
 - FERC does not have jurisdiction over local distribution facilities
 - States control where FERC does not assert jurisdiction
 - Because federal authority was asserted only over unbundled transmission, states retain jurisdiction of the ultimate sale of the energy
 - Because FERC chose not to assert jurisdiction over bundled retail transmission, states are left with control over the transmission component of bundled retail sales
State Retail Responses

- New England Demand Response Initiative
- Load response without retail competition: Vermont’s Load Response Programs
 - All Vermont utilities: fast-track
 - IOUs, Munis, & Coops
 - Board has approved them
 - Some based on ISO program; others utility-designed (OMYA – flag)
- For small loads, aggregation is key
VT PSB: Rate Design Basics
Seasonal Rates vs. Year-Round Rates

<table>
<thead>
<tr>
<th>OLD (1978-98)</th>
<th>Energy Cost</th>
<th>+ T&D Cost</th>
<th>= Retail Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher at VT Peak (Winter)</td>
<td>Driven By VT Peak (Winter)</td>
<td>Higher In Winter</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEW (Since '99)</th>
<th>Energy Cost</th>
<th>+ T&D Cost</th>
<th>= Retail Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher at NE Peak (Summer)</td>
<td>Driven By VT Peak (Winter)</td>
<td>Near Level Year-Round</td>
<td></td>
</tr>
</tbody>
</table>
Rate Design Challenge

- Can we design retail rates that are:
 - easy to understand
 - predictable with low customer attention
 - stable

- Yet accurately and 'adequately' reflect wholesale markets that are:
 - complex
 - volatile
Unified Field Theory

- Link between consumer preference and the wholesale market is vital
- Consumer response must be timely –
 - So that the market effect from consumer preference is perceived before generation and investment decisions are made
- Will end users get a price signal?
 - More importantly – will end-users’ price preferences be fed back to resource providers (directly or through Load Serving Entities)?