HKS Authors

See citation below for complete author information.

Abstract

In this Article, we provide a new statistical and legal framework to understand the legality and fairness of predictive algorithms under the Equal Protection Clause. We begin by reviewing the main legal concerns regarding the use of protected characteristics such as race and the correlates of protected characteristics such as criminal history. The use of race and nonrace correlates in predictive algorithms generates direct and proxy effects of race, respectively, that can lead to racial disparities that many view as unwarranted and discriminatory. These effects have led to the mainstream legal consensus that the use of race and nonrace correlates in predictive algorithms is both problematic and potentially unconstitutional under the Equal Protection Clause. This mainstream position is also reflected in practice, with all commonly used predictive algorithms excluding race and many excluding nonrace correlates such as employment and education.

Citation

Dobbie, Will and Crystal Yang. "Equal Protection under Algorithms: A New Statistical and Legal Framework." Michigan Law Review (2020).