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Abstract

Using data on completed offshore wind farms, I seek to identify the primary drivers behind

falling capital expenditure (CAPEX) in the global offshore wind sector. I test two hypotheses.

One is that offshore wind developers and turbine manufacturers have experienced learning-

by-doing. The other is that the most notable technological innovation in the industry, which

has been the shift to larger turbines, has driven down CAPEX. After controlling for market

selection of low-cost firms, I find evidence of no statistically significant returns to experience

among either developers or turbine makers. In contrast, the empirical analysis indicates that

a doubling in average turbine capacity is associated with a 19 percent decrease in CAPEX

per watt of installed capacity, suggesting that technological innovation may be a significant

part of the story of contemporaneous and future cost reductions in offshore wind. Many of

the demand-pull policies that seek to take advantage of the learning curve and are currently

in place in offshore powerhouses like the United Kingdom and the European Union, such

as future capacity targets, may thus require alternative justifications. Government research

and development spending as related to turbines, on the other hand, may be prescient.
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1 Introduction

Decarbonizing the electricity supply is a critical component of the international fight

against climate change. As a result, countries and subnational entities around the world

are supporting the deployment of energy facilities that harness renewable resources, such as

solar and wind energy. These governments seek to minimize the cost of these initiatives, not

only because they have other social issues to tend to but also because doing so can maintain

the support of the ratepaying public.

There are two forms of wind energy—onshore, which involves installing wind turbines on

land, and offshore, which includes those placed in water bodies. Land-based wind is much

more prevalent globally, with total installed capacity approximately twenty times that of

the offshore sector (Taylor et al. 2020). Onshore wind is also significantly cheaper, both

in terms of capital expenditure associated with installation (CAPEX) and the levelized cost

of electricity (LCOE), which is a measure of the average present-value cost of each unit of

electricity produced by a power plant over its lifetime.1 However, offshore wind energy is

an attractive option for countries with limited or densely populated land area but extensive

coastline, and its costs are falling.2 Offshore wind farms also tend to produce more energy

with less intermittency because of stronger and more consistent winds over water bodies.

For these reasons, certain governments, particularly those in Northern Europe and China,

have subsidized the growth of the offshore sector. As these countries and others, such as the

United States, seek to minimize the impact of renewable subsidies on ratepayers, choosing

the right policies to maximally drive down costs in the industry is of the utmost importance.

1CAPEX includes spending on wind turbines, the balance of system (foundations and electrical infrastruc-
ture), and installation costs (permitting, construction equipment, labor, and cost of capital).

2See Figure 2.
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In this study, I explore the drivers of CAPEX reductions in the offshore wind energy sec-

tor. Specifically, I investigate two hypotheses. One is whether there has been significant

learning-by-doing among companies developing (planning and assembling) offshore wind

farms and those manufacturing turbines. The other is whether technological innovations

among turbine original equipment manufacturers (OEMs) have been primarily responsible

for recent reductions in CAPEX. The primary technological advancement has been in the

size of turbines, as offshore turbines have become continually larger than their onshore coun-

terparts since the early 2010s. Learning-by-doing is the idea that productivity increases

due to accumulated experience. In capital-intensive industries such as the offshore wind

sector, these improvements theoretically stem from engineers and managers making slight

modifications to the production process (Benkard 2000).

To distinguish innovation from learning-by-doing, Stein (1997) posits that innovations,

which arrive in waves, lead to discrete cost reductions, while learning-by-doing allows firms

to decrease production costs given a fixed technology. While Stein (1997) approaches this

topic from a firm-specific perspective, this theory can also be applied to the offshore indus-

try as a whole. Within this theoretical framework, discrete jumps in turbine size constitute

the innovations, and turbine OEMs and developers experience learning-by-doing in manu-

facturing and installing turbines of a given size. The shift to larger turbines could itself

be construed as a result of accumulated experience among OEMs and developers, but this

interpretation likely requires stretching the definition of learning-by-doing.

The literature suggests the presence of learning-by-doing in the supply chains for other

renewable energy sources. For example, Anderson et al. (2019) discover that there are

cost-reducing benefits to developer-specific accumulated experience in America’s onshore
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wind industry. Nemet (2019) finds evidence of significant learning-by-doing within the solar

photovoltaic industry, as the actual technology itself has remained remarkably similar since

the 1950s. I describe more of the relevant literature in Section 3.

In order to understand whether there exists learning-by-doing in the offshore wind sector,

I build off of Anderson et al. (2019) and model the typical developer’s project design problem,

which includes, among others, the variables of interest measuring developer experience, OEM

experience, and turbine size. By exploiting the fact that developers frequently have limited

agency over deciding the size of their projects, I solve for the developer’s profit maximizing

decision and manipulate the resulting equation such that it can be empirically estimated by

an OLS regression with fixed effects. I conduct the analysis using data from offshore energy

consultancy 4C Offshore covering all fully commissioned, or completed, offshore wind farms.

The preferred set of specifications, which control for market selection of low-cost firms, show

no statistically significant evidence of learning-by-doing among either developers or turbine

OEMs.

In contrast, the empirical results suggest that a doubling in average turbine rating, or

size, is robustly associated with a 19 percent decrease in total costs, which corroborates the

broad academic and industry-based consensus that larger turbines have been a key driver of

CAPEX reductions. I then discuss the meaning of the primary ordinary least squares (OLS)

and robustness check results. I first note that the selection robustness check demonstrates

that any observed learning-by-doing effect in the offshore wind industry is likely due to low-

cost firms capturing market share rather than these firms seeing their costs fall with increased

experience. I also demonstrate how the cost-reducing effects of turbine rating nest within the

developer’s decision regarding turbine size at a particular site. I then use these estimates to
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make projections for the costs of offshore wind farms currently under development globally.

I conclude by connecting the results of my analysis to the policy debate around encouraging

the growth of offshore wind energy and renewables more broadly.

Overall, understanding cost drivers in the sector is important because of how quickly the

international and domestic offshore wind industries are projected to grow. By the end of

2018, nearly 23 gigawatts (GW) of offshore wind capacity were installed globally, with 154

to 193 GW projected by 2030. Moreover, the United States currently has only two fully

commissioned offshore wind farms, but the operational pipeline stood at more than 25 GW

at the end of 2018 (Musial et al. 2019). For context, as of 2019, the United States has

around 1,100 GW of installed electricity generation capacity (Energy Information Adminis-

tration 2020). Discovering whether learning-by-doing specifically has been leading to signifi-

cant CAPEX decreases has important climate modeling and policy implications. Large-scale

energy-economic models, such as the EPA-MARKAL model and REGEN model, are increas-

ingly incorporating learning curves in order to measure technological change endogenously

(Rubin et al. 2015). These models are often used to identify efficient and cost-effective

climate policies. Broadly speaking, if learning-by-doing has been a significant cost reducing

factor in the offshore wind industry, then demand-pull policies that incentivize rapid de-

ployment and, accordingly, cost reductions, such as future capacity targets, would be well

advised. Such measures have historically dominated the offshore wind policy dialogue. The

United Kingdom and Germany, the countries with the most installed offshore wind capac-

ity, have set targets for 40 GW and 20 GW of capacity by 2030, respectively (Durakovic

2020a, 2020b). In contrast, if technological innovation, such as turbine upscaling, is a more

significant cost lever, then technology-push policies, like increased public investment into
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research and development on turbines and other components of an offshore wind farm, may

constitute a wiser path forward.

The rest of the paper is organized as follows. Section 2 provides relevant background on

offshore wind farms and the industry as a whole, and Section 3 describes where this paper fits

within the existing literature. I describe the data and the theoretical and empirical models

in Sections 4 and 5, respectively. Section 6 displays the results of the empirical estimations,

and Section 7 contextualizes the results. The paper finishes with Section 8, which uses the

empirical model to make future CAPEX projections, and Section 9, which recapitulates the

study and considers its policy implications.

2 Offshore Wind Industry Overview

This section describes the structure of an offshore wind farm and the history of the

offshore wind industry in a manner that is germane to the cost reduction analysis conducted

in this study.

2.1 Offshore Wind Farm Structure

Offshore wind facilities are complex projects that consist of several distinct components.

The electricity is produced by turbines that are typically fixed to the seabed by foundations.

The most common type of foundation is a monopile, which is simply a steel pile that is

driven into the seabed and then connected to the turbine. The technology used to drill the

first monopiles in the industry was not very different from 1980s offshore oil and gas tech-

nology. Generated electricity is carried by array cables to an offshore substation that sends
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the electricity along an export cable to an onshore substation, which is directly connected

to the grid. The construction process involves specialized “jack-up” vessels, which install

the turbines, in addition to cable-laying vessels and substation installation vessels (BVG

Associates 2019).

Figure 1: CAPEX Breakdown

Notes: Source is Stehly et al. (2020).

Developers such as Ørsted and Vattenfall are responsible for planning the offshore wind

farm and bringing all of these components together. They frequently put out requests for

proposals (RFPs) to select the turbine OEM, cable manufacturer, and other firms that have

specialized roles in the installation process. Developers must also handle the permitting and

consent processes, which include feasibility studies, environmental surveys, and geophysical

surveys (BVG Associates 2019). Figure 1 provides a breakdown of the CAPEX of a typical,
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fixed-bottom offshore wind facility.

It is worth noting that, under ideal circumstances, this analysis would be conducted with

the LCOE instead of CAPEX as a measure of costs. What ultimately matters is the cost of

each unit of generated electricity, not necessarily the upfront cost of the power plant. CAPEX

data, however, is much more available than LCOE statistics, which also require analysts

to make assumptions about an offshore wind farm’s output over its lifetime. CAPEX, as

opposed to operational expenditures (OPEX) and other costs, typically accounts for around

70 percent of LCOE (Crabtree et al. 2015). The remainder primarily stems from OPEX

related to operating and maintaining the turbines and associated electrical infrastructure

over the lifetime of the offshore wind farm. Because the offshore wind industry is so capital-

intensive, it is reasonable to use CAPEX data as a proxy for overall electricity costs.

2.2 Offshore Wind Industry History

The industry is relatively young, as the first offshore wind farm was installed in Danish

waters in 1991. The Vindeby project produced 5 megawatts (MW) of power in total, consist-

ing of 11 0.45 MW turbines installed in water depths less than 7 meters (Lehn-Christiansen

2017). For context, Vindeby could power 2,200 Danish homes on average. Like Vindeby,

early offshore wind facilities were predominantly Danish and small. They were also cheap

because they utilized close derivatives of onshore wind turbines based on concrete founda-

tions in shallow waters no deeper than 10 meters. These projects were primarily driven by

direct government orders (Gottlieb et al. 2019).
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Figure 2: CAPEX Over Time

Notes: Each point corresponds to a unique wind farm, plotting its unitized CAPEX (total project

CAPEX divided by project capacity) against the year when it was fully commissioned.

In the 2000s, Danish governmental plans and offshore leasing rounds held by the Crown

Estate in the United Kingdom led to the commissioning of the first utility-scale offshore

wind farms, which each had a total capacity in the hundreds of MW. These supportive

policies, combined with generous feed-in tariffs and demand-pull national buildout plans

in Denmark, the United Kingdom, and other Northwestern European countries, increased

market volume and encouraged turbine OEMs to begin producing dedicated offshore wind

turbines (Gottlieb et al. 2019). Feed-in-tariffs are long-term contracts that guarantee a

fixed, administratively set offtake price for each megawatt hour of electricity produced by a
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facility over its entire lifetime. Feed-in tariffs differed slightly from country to country, but

they were all government-set subsidies that were often higher for offshore wind energy than

for other renewable and nonrenewable energy sources.

This rapid rise in demand, along with an underdeveloped supply chain, rising commodity

prices, and a trend towards installing offshore wind farms in deeper waters, led to a rise in

CAPEX in the late 2000s and early 2010s (Van der Zwaan et al. 2012). Figure 2 plots all

of the CAPEX observations for individual offshore wind farms in my sample against time,

displaying a parabolic trajectory for CAPEX over the course of the offshore wind sector’s

history. The decrease in CAPEX since it peaked around 2013 is one of the motivations for

this paper.

By the mid-2010s, governments interested in growing their domestic offshore wind sec-

tors began prioritizing cost reductions. Rather than providing fixed, expensive subsidies,

the United Kingdom, the Netherlands, Germany, and Denmark began running competitive

auctions that selected the projects with the lowest-price bids. These bids are based on the

LCOE of output rather than the upfront CAPEX, but as I explain above, CAPEX is a

reasonable proxy for LCOE. Simultaneously, turbine OEMs began selling larger turbines

with longer blades and higher output (Gottlieb et al. 2019). Due to the long lead times

associated with offshore wind development, most of the projects in my sample, which are all

fully commissioned, were not procured under these competitive tenders such that this shift

in policy design cannot explain the post-2013 decreasing trend in CAPEX. It is also worth

noting that, throughout the 2010s, China was the only non-European country to scale its

offshore wind sector.

Overall, the trends of increasing water depth, average turbine rating, and project size have

9



led to a dramatic evolution of the sector. Hornsea Project One, which was fully commissioned

in 2019, has 7 MW turbines installed in water depths ranging from 20 to 40 meters for a

total capacity of 1200 MW. Figure 3 provides a visualization of the scale of these turbines

in order to show the results of technological innovation on the part of the turbine OEMs.

Figure 3: Growth in Turbine Rating

Notes: Source is Gottlieb et al. (2019).

3 Related Literature

This section reviews relevant industry reports and economic literature related to the

hypotheses about learning-by-doing and technological innovation.
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3.1 Cost Reductions in Offshore Wind

The continual increase in offshore wind turbine capacity is emphasized as a major CAPEX

reduction driver in the majority of the literature (Van Hoof and Velthuijsen 2018; Musial et

al. 2019; New York Power Authority 2019; Jennings et al. 2020; Taylor et al. 2020). Larger

turbines are associated with lower CAPEX per unit of capacity and economies of scale during

the installation process. During interviews, employees at Ørsted and at Siemens Gamesa,

which are the world’s most prominent developer and turbine manufacturer, respectively,

also agreed with these assessments. Analysts at the energy research outfits Bloomberg

New Energy Finance (BNEF) and Wood Mackenzie endorsed this interpretation as well.

Separately, certain exogenous factors, such as commodity prices (especially that of steel)

and the average water depth, are almost ubiquitously mentioned as important determinants

of CAPEX by these sources as well.

In contrast, it is unclear whether learning-by-doing is a major cost reduction driver in

the offshore wind industry, and the author is unaware of any econometric studies that an-

swer this question at the time of writing. The literature examining learning in the offshore

wind sector tends to be limited to industry reports. Some literature points to anecdotal

evidence about learning-by-doing among both developers and manufacturers. Snyder and

Kaiser (2008) cite evidence that, for individual wind farms, firms install the last turbines

faster than they do the first ones in order to assert that firms with greater offshore installa-

tion experience can boast shorter installation times. Sources from Ørsted corroborated this

claim. Jennings et al. (2020) compile interviews from a variety of stakeholders in the U.K.

offshore wind sector and find that learning-by-doing is frequently associated with successful
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deployment of each generation of wind turbines, encouraging the introduction of the next,

typically larger generation. Taylor et al. (2020) argue that both accumulated developer

and turbine manufacturer experience have been important in driving down CAPEX. Van

Hoof and Velthuijsen (2018) and New York Power Authority (2019), however, do not discuss

cost reductions due to learning-by-doing. Furthermore, during an interview, an employee at

Siemens Gamesa did not immediately point to learning as an important factor.

There are other drivers, similar to learning-by-doing, that are stressed only by a subset of

articles, stakeholders, and analysts, and these sources sometimes disagree on the direction of

these drivers’ impacts on CAPEX. New York Power Authority (2019), Jennings et al. (2020),

Taylor et al. (2020), and employees at Ørsted assert that competition among developers and

turbine manufacturers, respectively, has been important in bringing down costs. In contrast,

Jennings et al. (2020) note that it is possible that increased competition has hampered

knowledge exchange between firms, and Ibenholt (2002) states that greater competition can

create volatile markets for wind developers. Van Der Zwaan et al. (2012), Vieira et al.

(2019), and Jennings et al. (2020) point to the maturation of the supply chain, especially

the growth in manufacturing capacity and the development of “jack-up” vessels specialized

for offshore wind installation, as an important factor pushing down CAPEX. Analysts at

Wood Mackenzie, Musial et al. (2019), and Jennings et al. (2020) note that technological

innovation among array and export cable manufacturers has reduced costs, while Van Hoof

and Velthuijsen (2018) and Taylor et al. (2020) fail to mention this CAPEX driver.

Overall, there is disagreement in the industry about the importance of certain CAPEX

reduction drivers. Of those that are not cited ubiquitously in the literature, increasingly

competitive procurement regimes and supply chain maturation are highly endogenous deter-
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minants of CAPEX whose effects would be difficult to separate from those of other drivers.

For example, it is unclear how one would distinguish the impact of slack in the supply chain

from technological innovation in the turbine manufacturing sector. In contrast, the phe-

nomenon of learning-by-doing has been well studied by the field of industrial organization

as described in the following section.

3.2 Learning Curve Analysis in Renewables

Studies of learning-by-doing have been conducted for various industries, including re-

newable energy sectors. The concept of learning-by-doing is not new and was first formally

introduced by Wright (1936) in the context of the aircraft industry. Many analyses of

learning-by-doing simply regress some measure of unitized costs on a variable representing

cumulative experience, such as the number of airplanes a manufacturer has produced or the

MW of electricity generation capacity a project developer has installed.

Some of the studies that have most convincingly estimated learning-by-doing, such as

Benkard (2000), use data on an individual manufacturing company’s marginal cost for each

unit of a particular product. For the offshore wind industry, performing a similar analysis

on production costs of a specific type of turbine or other wind farm component would be

ideal. However, the industry is relatively nascent and certain markets in its supply chain

have high levels of concentration, making it difficult to obtain or recover data on individual

wind farm component costs. Total wind farm CAPEX data is more readily available and

provides a more holistic picture of offshore wind costs regardless.

Learning curve analysis is a popular approach in cost studies of the energy industry,
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and particularly in research on renewable sectors. The prospect of cost reductions due

to learning-by-doing is often used to justify policies supporting the initial deployment of

early-stage renewable technologies. Partially due to its simplicity, the one-factor learning

curve, which typically measures the log-log relationship between unit costs and cumulative

installed capacity and does not account for any other explanatory variables, dominates the

renewables-focused literature (Rubin et al. 2015).

There are significant concerns with interpreting simple learning curve models as causal.

The omission of a measure of exogenous technical change can lead to significant upward bias

in estimates of the learning parameter, as empirically demonstrated by Nordhaus (2014).

Nordhaus (2014) notes that exogenous technical change includes most sources of cost declines

other than the learning curve, such as the returns to research and development and spillover

inventions from other economic sectors. Abernathy and Wayne (1974) maintain that most

empirical research on learning curves incorrectly assumes that cost reductions due to learning

continue in perpetuity. In short, Ibenholt (2002) and Anderson et al. (2019) note that cost

reductions in renewable energy industries are driven by four main factors: learning-by-doing,

input price changes, exogenous technical change, and economies of scale. If an empirical

strategy can separate learning-by-doing from the other factors, it should constitute a valid

modeling approach.

The literature has evolved to try to address some of these concerns. One approach is

to estimate two-factor learning curves, which include some measure of research and devel-

opment spending in addition to a cumulative capacity variable (Jamasb 2007). Further-

more, to account for heterogeneity among different firms, Van Benthem et al. (2008) and

Bollinger and Gillingham (2019) estimate residential photovoltaic solar cost reductions due
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to learning by measuring each solar installer’s accumulated experience, rather than using

an industry-wide measure. This approach also allows one to separate appropriable learning

from non-appropriable learning. Theoretically, governments using learning as a justifica-

tion to subsidize a renewable technology should only do so when there exists significant

non-appropriable learning because only non-appropriable learning constitutes a positive ex-

ternality. Anderson et al. (2019) build on this work by developing a structural model to

describe cost minimization on the part of onshore wind developers in the United States and

empirically estimating the model to find if there are appropriable and non-appropriable re-

turns to experience in the sector. I use this paper’s model as a theoretical basis and extend

it for my analysis.

4 Data

This section surveys the data used in this study, commenting on its particularities and

limitations when relevant. The primary dataset I use is from the U.K.-based marine con-

sultancy 4C Offshore. The dataset is global and includes information on every fully com-

missioned, decommissioned, and future offshore wind farm. Each observation pertains to

a single offshore wind facility and, inter alia, has data on the facility’s home country, the

location’s geographic attributes (i.e. water depth, distance from shore, wind speed), the

wind farm’s development timeline, its developers, its turbines, its revenue mechanism, and

its overall CAPEX. 4C Offshore collects these data through close correspondence with the

companies developing these wind farms. I verify the data and fill in missing observations

for variables that are important in the main analyses, primarily through online research.
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Appendix A.1 includes more information on manipulations made to the original dataset.

I obtain data on commodity prices and other controls from a variety of sources. I get

data on average annual prices of refined copper (cents/lb), Brent Crude ($/barrel), and steel

($/tonne) from the Economist Intelligence Unit. I also use data on the annual hydraulic

cement manufacturing producer price index, indexed to June 1989 and sourced from Federal

Reserve Economic Data. These commodities, especially steel, are important in the offshore

wind construction process. To account for country-level differences in labor costs, I utilize

monthly wage data averaged at the annual level for various countries from the Economist

Intelligence Unit. Finally, as a proxy for exogenous technological change, I obtain global

weighted-average unitized CAPEX data for the onshore wind sector from IRENA’s Renewable

Power Generation Costs in 2019 report.

There are some limitations with this dataset. There is a relatively small number of ob-

servations, which is naturally a drawback of studying a nascent sector. I use data from

offshore wind farms that had been fully commissioned by 2019, and there were fewer than

130 completed facilities by that time. Even though I verify most of the relevant observations

in the 4C Offshore database, there may still be some slight inaccuracies in the data. The

4C Offshore data stems from quotes provided by developers and are thus not adjusted for

variations in policy that directly impact CAPEX. For example, transmission policy varies

by country, and these regulations determine which stakeholder is responsible for securing

investments for transmission assets, such as onshore and offshore substations and undersea

cables. In the United Kingdom, for example, developers are initially responsible for making

sure their offshore wind facilities can link up to the grid, while, in Germany, it is the trans-

mission system operator’s responsibility from start to finish (New York Power Authority
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2019). Because 4C Offshore collects its CAPEX data from developer quotes, its CAPEX

figures for offshore wind farms in the United Kingdom would include transmission invest-

ment, while the statistics for their German counterparts would not. This is a potential issue

because transmission typically comprises around one-fifth of total CAPEX. I address how I

deal with this potential measurement error in Section 5.1.

To deal with outliers, I remove demonstration projects with less than 10 MW of capacity

and fewer than 4 turbines. These projects are usually built for research purposes and are

thus not typically built with cost minimization in mind. I also remove the BARD Offshore

1 wind farm because it faced significant scheduling delays and cost overruns due to a series

of unique engineering and construction setbacks (Karnitschnig 2014). I do the same for the

Block Island wind farm because it was the first project built in U.S. waters and most of the

installation infrastructure had to come from Europe, significantly increasing costs (McKenna

2017). The 4C Offshore dataset provides CAPEX in various currencies, so I standardize all

CAPEX figures to 2019 USD. Finally, many developers form special purpose vehicles for

each of their projects, so I manually separate these vehicles into their member companies to

get a more accurate representation of the developers behind each wind farm.

The variables of interest are the measures of cumulative experience for developers and

turbine OEMs, respectively, and the average turbine capacity. To compute these variables, I

simply sum the MW of capacity that the developer has installed and that the turbine OEM

has sold, respectively, prior to the observed wind farm’s installation. If a project has multiple

developers or multiple turbine manufacturers, I divide the project capacity by the number of

developers and OEMs, respectively, and attribute the resulting fraction to each developer’s

and OEM’s stocks of experience. I do not account for acquisitions in either portion of the
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supply chain and do not account for depreciation in experience across time and space.

Figure 4: CAPEX vs. Commonly Cited Explanatory Variables

Notes: Within each panel, each point corresponds to a unique wind farm, plotting its unitized

CAPEX against a potential explanatory variable. Developer Experience is measured by the cumu-

lative MW installed by the developer(s) prior to the observed wind farm, and OEM Experience is

the cumulative MW of turbines sold by the turbine OEM(s) prior to the observed wind farm.

Figure 4 includes various plots that suggest the direction of the relationships between the

variables of interest and unitized CAPEX, which is the quotient of total project CAPEX and

project capacity. At first glance, cumulative developer experience and turbine rating appear

to have no correlation with CAPEX, while cumulative OEM experience appears to have a

weakly negative relationship. Ceteris paribus, the theory of learning-by-doing would suggest

that both experience variables should have negative relationships with CAPEX. Also, the
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positive slope of the line of best fit in Figure 4c seems to refute the aforementioned consensus

that larger turbines have driven down capital expenditure.

It is worth noting that observations of developer experience are clustered below 1000

MW, indicating that most developers are relatively inexperienced, while observations of

OEM experience are slightly more spread out. This is partially a result of the fact that the

turbine OEM market is significantly more concentrated than the developer space. The only

developer with more than 3000 MW of experience at any point in the dataset is Ørsted.

In contrast, Siemens Gamesa, the market-leading turbine OEM, and Vestas have sold more

than 15000 MW and nearly 5000 MW of turbines, respectively. As a result of this market

concentration, there is more variation in observations of OEM experience than there is in

observations of developer experience. Finally, of all the potential explanatory variables,

water depth seems to have the strongest relationship with CAPEX.

5 Methodology

This section describes the theoretical model of the developer’s project design problem,

empirical estimations of the model, and associated robustness checks.

5.1 Model

The theoretical basis for my estimation strategy is similar to that employed by Anderson

et al. (2019). I assume that the production function for developers in installing offshore
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wind capacity is Cobb-Douglas,

qi = f(Ai, zM , zL, zK) = Aiz
αM
M zαLL zαKK , (1)

where qi is the installed capacity of wind farm i and the choice variables zM , zL, and zK

represent factor inputs from raw materials, labor, and capital, respectively. Given the Cobb-

Douglas functional form, αj is a measure of how productive each input zj is relative to the

other inputs, and γ = αM +αL +αK . I assume the following functional form for total factor

productivity:

Ai = [ExpDevi,ti ]
β[ExpOEMi,ti ]

θ[TurbineCapi]
δ · eφ

TFP
Ci

+ψTFPTi
+Depthi+εi , (2)

where the parameter β measures the returns to cumulative developer experience ExpDevi,ti , θ

measures the returns to cumulative turbine manufacturer experience ExpOEMi,ti , δ measures

the effects of average turbine rating TurbineCapi, and ti is the date when the observed wind

farm is fully commissioned. I include country fixed effects φTFPCi
to account for different policy

environments. These indicator variables should absorb the heterogeneity in transmission

policy mentioned in Section 4, as transmission policy in each country does not fundamentally

change over the time period of this data set. I also include year fixed effects ψTFPTi
to

account for the exogenous technological trends that affect all wind farms in the same way,

which accounts for the identification concern emphasized by Nordhaus (2014). To avoid

overidentifying and reducing the power of the sample, which has 124 observations, I use

fixed effects for five-year periods, rather than annual fixed effects. As noted in Section 3.1,

20



water depth and turbine capacity (or rating) are almost ubiquitously listed as important

determinants of CAPEX, so I include them in the model. The error term is εi.

While country fixed effects account for differences in transmission policy, subsidy poli-

cies vary between countries and over time. Most countries in the sample initially provided

generous feed-in tariffs to stimulate their domestic offshore wind industries but have since

shifted to more competitive procurement regimes, such as competitive tenders (Jansen et al.

2020).3 Because of the long lead times associated with offshore wind development, which

are often in the neighborhood of five years, the transition from feed-in tariffs to competitive

tenders, which began after 2015 in most countries, does not significantly manifest itself in

the sample. Only 5 of the 124 observed offshore wind farms were built under competitive

auction schemes. Still, in all of the specifications, I include a dummy variable for whether

an observed wind farm was built after participating in a competitive tender.

Even before the shift to competitive tenders, analysts at BNEF note in interviews that

countries began reducing their feed-in tariffs as a response to falling costs in the industry.

I do not account for feed-in tariff variation for two reasons. First, the variation in feed-in

tariffs is endogenous, as governments’ electricity regulation bodies often set the tariffs in

response to cost trends in the industry. Second, under the cost minimizing model described

below, it can be assumed that, given an administratively fixed price per unit of output, the

developers will seek to minimize costs and accordingly maximize profits regardless of the

magnitude of that price.

Given that most of the wind farms in the data set receive a feed-in tariff subsidy, which

is based on projected output from a preset amount of installed capacity, I assume developers

3Feed-in tariff regimes are described in more detail in Section 2.
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solve the following cost minimization problem:

argminzM ,zL,zKpMzM + pLzL + pKzK s.t. qi ≤ Aiz
αM
M zαLL zαKK , (3)

where pj is the price of input j. This problem yields the cost function

C(qi, Ai) =

[
qi
Ai
pαMM pαLL pαKK

] 1
γ

. (4)

5.2 Empirical Estimation

After a logarithmic transformation, the solution to the cost minimization problem re-

sults in the following equation (after flipping the necessary signs), which can be estimated

econometrically:

log(Ci) =
αM
γ
logpM +

αL
γ
logpL +

αK
γ
logpK +

1

γ
logqi +

β

γ
ExpDevi,ti

+
θ

γ
ExpOEMi,ti +

δ

γ
TurbineCapi +

1

γ
Depthi +

1

γ
φTFPCi

+
1

γ
ψTFPTi

+
1

γ
εi,

(5)

where the parameters of interest are β, θ, and δ.

To enhance interpretability of the estimates and more closely align with standards set

by prior literature, Ci is unitized and equal to the quotient of total project CAPEX and

project capacity, or qi (Rubin et al. 2015; Anderson et al. 2019).4 I also take logs of

the developer and OEM experience variables to improve interpretability, given that these

4The empirical estimations also keep logqi on the right-hand side to account for the potential cost-reducing
effects of scale economies. It may be concerning that qi is on both sides of the equation, but it is important
to note that it is not a variable of interest such that the magnitude of the coefficient on qi is not partic-
ularly relevant for this study. Regardless, to address these concerns, Appendix A.2 includes the results of
alternative specifications in which Ci is not unitized.
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variables frequently take on values in the hundreds or thousands of MW.

For several reasons, I only include two of the three factor inputs in the actual empirical

estimation—labor and raw materials, which are denoted by the subscripts L and M, respec-

tively. I exclude capital from the estimation strategy because it is slightly redundant with

raw materials and is subject to data availability constraints. Broadly speaking, developers

utilize two types of capital. One category includes the physical plant components of the

offshore wind farm, such as the turbines, foundations, and cables. The other includes ma-

chinery necessary to link and install these components, such as jack-up vessels. Prices of

components such as turbines and cables are highly endogenous and likely subject to mark-

ups that would be difficult to estimate. Controlling for commodity prices accounts for much

of the potential exogenous variation in the prices of these components. Data on specialized

installation capital, such as jack-up vessels, is even less available and reliable. In fact, at

the time of writing, there are only 16 jack-up vessels in the world, making it difficult to

find rental rates and to assume that these capital markets are exogenous to the developer’s

problem (Steinberg and Wallace 2021).

The subscripts on pL and pM indicate that the wage data is annual by country and

that the commodity price data is annual and for the global market, respectively. The first

specifications are OLS estimates of this equation.

Regarding country fixed effects, I only include dummy variables for the United Kingdom,

Germany, China, Belgium, the Netherlands, and Denmark in an attempt to maximize the

statistical power of the estimates. It is worth noting that these 6 countries account for over

98 percent of the total installed capacity in the cleaned sample.

While offshore wind farms use copper for array and export cabling, concrete for foun-
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dations, oil to fuel jack-up installation vessels, and steel for turbines and foundations, steel

is the most heavily used and critical raw material input (BVG Associates 2019). I thus

estimate a variety of specifications, controlling for the prices of all of these inputs in one of

the specifications and only for the price of steel in the other two. Again, I do this to preserve

as much statistical power for the estimates as possible.

In one of the specifications, I control for exogenous technological trends using annual

weighted average cost data for the global onshore wind sector instead of utilizing five-year

fixed effects. It is plausible that including onshore CAPEX could control for general exoge-

nous trends in wind generation technology, such as certain turbine, cabling, and installation

process improvements unrelated to cumulative offshore developer experience and cumulative

offshore OEM experience. The onshore wind sector is substantially larger than the offshore

sector, so this variable is likely exogenous.

5.3 Robustness Checks

While the model accounts for many cost reduction factors not included in prior learning-

by-doing studies, the OLS specifications will only provide consistent estimates for β and θ if

certain assumptions are met. It is critical that project size, or qi, is independently assigned.

If qi is a choice variable rather than a parameter, then the observed coefficient on qi may be

biased. Insofar as there is a correlation between qi and developer experience or turbine OEM

experience (both measured using cumulative MW developed and sold, respectively), then

there may be bias introduced into the estimates of β and θ, respectively. As I argue earlier in

this section, most of the observed wind farms receive a feed-in tariff, which is allocated based
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on a preset amount of installed capacity. It is possible, however, that the developer has some

control over deciding the amount of installed capacity and that its decision may be related

to the size of the projects it has installed in the past. Project size would then be correlated

with the experience variables measured in cumulative MW. During interviews, industry

stakeholders at Ørsted and Siemens Gamesa and analysts at BNEF and Wood Mackenzie

could not come to a consensus regarding the validity of the assumption that qi is exogenous.

In case the assumption does not hold, I run regressions identical to the previously described

set of OLS specifications except the developer and turbine OEM experience variables are

measured in cumulative projects rather than cumulative MW installed. For example, if the

firm that developed wind farm i had built 2 offshore wind farms prior, the value for ExpDevi,ti

would be 2 regardless of how large those prior projects were. Thus, even if qi is correlated

with εi, or the structural error term, it should not be correlated with these new measures of

experience. If the parameter estimates do not radically change in statistical significance or

direction, then I can conclude that the assumption that qi is independently assigned is valid.

Separately, there is a potential selection concern in which the market selects for low-cost

firms, allowing these companies to gain experience because of their low costs. This is the

reverse direction of causality from that implied by the presence of learning-by-doing and

thus constitutes a perennial concern in estimating learning curves. As done by Anderson

et al. (2019) for the U.S. onshore wind industry, I carefully examine the history of the

global offshore wind sector to understand whether this concern is legitimate in this specific

industrial context. Evidence of high-cost firms exiting the market or being acquired would

be a cause for concern.
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Table 1: Offshore Wind Turbine Manufacturing Industrial History

Turbine OEM Acquisition Year of Last Installation

Nordtank Vestas (2004) 1996

Bonus Siemens Gamesa (2004) 2001

Senvion Siemens Gamesa (2019) 2017

Siemens Gamesa No 2019

Vestas No 2019

GE Energy No 2019

WinWind No 2010

Adwen Siemens Gamesa (2017) 2018

Sinovel No 2012

Fuji Heavy Industries No 2010

United Power No 2010

MingYang No 2019

SEwind No 2019

Envision No 2019

Sany No 2010

Goldwind No 2019

Haizhuang No 2019

BaoNan No 2010

Hitachi No 2013

Dongfang Electric Corporation No 2015

Doosan Heavy Industries No 2017

XEMC Darwind No 2016

Notes: In Column (2), company listed is the acquirer. Column (3) refers to the year of full

commissioning of the most recent offshore wind farm to use turbines from the OEM.

The history of the offshore wind turbine manufacturer market does not definitively

demonstrate whether there is a threat posed by selection. Table 1 includes information

on whether turbine OEMs in the dataset were acquired by competitors and, in order to

identify firms that have potentially exited, also notes the year in which each turbine OEM

last sold turbines to an offshore wind farm. Table 1 shows that every non-acquired firm sold
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turbines into the 2010s. Most of the OEMs that were last active in the early 2010s, such

as Fuji Heavy Industries, United Power, Sany, BaoNan, and Hitachi, sold turbines to only

one project. This likely indicates that they were never legitimate players in the offshore

wind space and were simply testing the waters. Corroborating this interpretation, a Siemens

Gamesa employee mentioned in an interview that, because of high risks and liabilities, many

turbine OEMs have refused to enter the offshore market or have done so hesitantly. These

risks stem from the fact that technological or quality issues have severe financial consequences

given the scale of most contemporary offshore wind farms. To say these companies ceded

market share to low-cost firms due to high costs would be inaccurate given that they were

never truly engaged in the market in the first place.

Still, there are some firms that seemed to have legitimately entered the market and yet

have not been active for more than 5 years, including WinWind and Sinovel, so I do not eas-

ily dismiss the selection concern. Regarding mergers and acquisitions, while it appears that

Vestas bought Nordtank and Siemens Gamesa bought Bonus in 2004 in order to initially

gain footholds in the market, rather than acquire high-cost competitors, Senvion did de-

clare bankruptcy before selling its assets to Siemens Gamesa in 2019 (Windpower Monthly

2004; Siemens Gamesa Renewable Energy 2017; Garcia Da Fonseca and Liu 2019). The

aforementioned industry stakeholders at Ørsted and Siemens Gamesa and analysts at BNEF

and Wood Mackenzie disagreed about whether the acquisitions listed in Table 1 occurred

because high-cost OEMs were rendered not competitive, allowing low-cost OEMs to gain

market share, or whether there were other market forces at play.

Thus, while it would be possible to argue that selection for low-cost firms is not a huge

threat to my model, I try to account for it with alternative specifications that include turbine
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manufacturer fixed effects. To maintain the statistical power of the sample, I only include

fixed effects for the 6 largest turbine manufacturers, which are Siemens Gamesa, Vestas,

Adwen, Senvion, Goldwind, and Envision. They collectively account for approximately 95

percent of the offshore wind capacity installed in the dataset. The inclusion of these fixed

effects accounts for inherent differences in the cost structures of these firms that may have

allowed low-cost OEMs to capture market share when they entered the industry. These firms’

initial rise in the industry would have then spurred cost reductions not due to learning-by-

doing but rather because of inherent cost advantages. This robustness check deals with the

selection concern, as any CAPEX reductions occurring after these firms sold turbines to their

first few projects, controlling for the variables included in the primary OLS specifications,

can be attributed to accumulated experience.

6 Results

This section presents and interprets the results from the OLS estimates of Equation (5)

and the robustness checks related to the project size exogeneity and selection assumptions.

6.1 Primary OLS Results

Table 2 displays results from the OLS estimations of Equation (5). The first takeaway

is that turbine OEM experience appears to affect project costs, while developer experi-

ence does not. The coefficients of interest are those on log(Developer experience) and

log(OEM experience), which are estimations of β and θ, respectively.

The estimates for β, which measures the returns to cumulative developer experience, are
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not statistically significant at the five percent level and are rather closely bound around zero.

As a result, at the five percent significance level, I cannot reject the null hypothesis that

developer experience is not associated with offshore wind CAPEX variation. In contrast,

the estimates for θ, which measures the cost reducing effects of cumulative turbine OEM

experience, are significant in all three specifications. The point estimates and associated

confidence intervals vary only slightly between the different regressions, demonstrating that

they are robust to the inclusion of different measures of exogenous technological change and

other controls. The point estimates, which are around -0.02, indicate that, holding developer

experience and the control variables constant, a 1 percent increase in OEM experience, as

measured by cumulative MW of turbines sold, is associated with a 0.02 percent decrease in

unitized CAPEX.

The estimates for the coefficient on turbine rating, or δ, are directionally aligned with

the general industry and academic consensus that larger turbines are associated with lower

unitized CAPEX. The point estimates in all of the specifications are around -0.25, implying

that, controlling for the other variables included in the specifications, a 1 percent increase

in turbine size, is associated with 0.25 percent decrease in total CAPEX per MW. While

the relative costs of increasing turbine size and gaining experience may be very different, it

is clear that turbine rating has a significantly larger association with cost reductions than

does developer experience or turbine OEM experience. It is important to note that turbine

size is treated like a control in these specifications, so drawing causal implications from these

estimates should be done with caution.
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Table 2: OLS Results
(1) (2) (3)

VARIABLES log(CAPEX/W)

log(Developer Experience) 0.001 0.000 0.007
(0.007) (0.007) (0.008)

log(OEM Experience) -0.016** -0.018** -0.016**
(0.007) (0.007) (0.007)

log(Average Turbine Rating) -0.222*** -0.263*** -0.214***
(0.075) (0.076) (0.081)

log(Project Capacity) -0.041 -0.049 -0.020
(0.035) (0.034) (0.030)

log(Steel Price) 0.090 -0.023 0.241**
(0.242) (0.126) (0.109)

log(Copper Price) 0.119
(0.374)

log(Wage) 0.171*** 0.181*** 0.122***
(0.045) (0.044) (0.042)

log(Oil Price) -0.164
(0.208)

log(Cement Price) -0.758
(0.581)

Water Depth 0.013*** 0.012*** 0.013***
(0.003) (0.003) (0.003)

Competitive Procurement -0.054 -0.053 -0.097
(0.124) (0.123) (0.135)

Average Onshore CAPEX/W 0.129
(0.208)

Observations 124 124 124
Adjusted R-squared 0.674 0.672 0.609
Country Fixed Effects Y Y Y
Time Fixed Effects Y Y N

Notes: Table reports regression coefficients with robust standard errors. Developer and OEM

Experience are measured in total MW of capacity developed and total MW of turbines sold prior

to the observed wind farm, respectively. Steel price, copper price, oil price, cement price, and

weighted average onshore CAPEX are aggregated globally and annually. Wage is aggregated by

country and annually. The “Competitive Procurement” dummy equals 1 if the project received

revenue under a competitive procurement, 0 otherwise. All CAPEX and price variables are in 2019

USD. *** p < 0.01, ** p < 0.05, * p < 0.10.

Most of the other coefficients make intuitive sense, which would indicate that the OLS
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regression models do not terribly skew or otherwise misinterpret the data. The coefficient

on the price of steel is positive in all of the specifications. It is only significant at a five

percent level in Column (3), which excludes five-year fixed effects. This would imply that

the time fixed effects account for steel price variation, which makes sense because the steel

data is aggregated at the annual level. The lack of statistical significance for the coefficients

on copper, oil, and cement prices in Column (1) likely results from the fact that commodity

prices tend to be correlated, especially in the sample period, as China’s rapid development

in the 2000s and early 2010s and subsequent slowdown helped drive volatility in commodity

markets.

The direction of the coefficient on wages is positive and significant at a five percent level

in all of the specifications, which also makes sense intuitively. The coefficient on water depth

in all of the specifications is significantly positive, which aligns with the data as presented in

Figure 4d in Section 4. The point estimates imply that, controlling for the other variables

included in the specifications, a 1 meter increase in depth is associated with a 1 percent

increase in CAPEX per MW. Instead of five-year fixed effects, I include a measure of global

onshore wind CAPEX as a proxy for exogenous technological change in Column (3) and its

positive, albeit insignificant, coefficient aligns with the notion that there is some relation

between onshore wind and offshore wind CAPEX trends.

The greatest threat to the validity of these results, other than the issues that are ac-

counted for in the following robustness checks, is the sheer size of the sample, which has

only 124 observations. This small sample is unfortunately a natural result of doing research

related to such a nascent industry. One other concern stems from how closely offshore wind

developers and turbine OEMs have historically worked with governments in designing policy
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(Gottlieb et al. 2019). It is difficult to account for this factor given the endogeneity of such

interactions. For example, one can argue that developers successfully influencing policy is a

result of their accumulated experience in the offshore wind industry.

6.2 Robustness Checks

This section describes the results of the robustness checks and their implications.

6.2.1 Project Size Exogeneity Assumption Test

Table 3 displays results from the alternative specifications in which developer and OEM

experience are measured in projects, rather than in MW of capacity. This is meant to deal

with concerns that project size, or qi, is not exogenously assigned. As described in more

Table 3: Project Size Exogeneity Test Results
(1) (2) (3)

VARIABLES log(CAPEX/W)

Developer Experience -0.002 -0.002 0.001
(0.005) (0.005) (0.006)

OEM Experience -0.003*** -0.003*** -0.003**
(0.001) (0.001) (0.001)

log(Average Turbine Rating) -0.178** -0.214*** -0.176**
(0.073) (0.073) (0.078)

Observations 124 124 124
Adjusted R-squared 0.674 0.672 0.607
Country Fixed Effects Y Y Y
Time Fixed Effects Y Y N

Notes: Table reports regression coefficients with robust standard errors. The three specifications

are identical to those in Table 2 except developer and OEM experience are measured in total

projects developed and total projects to which turbines were sold prior to the observed wind farm,

respectively. These experience variables are not logarithmically transformed. *** p < 0.01, ** p <

0.05, * p < 0.10.
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detail in Section 5.3, if project size is endogenous and correlated with developer and OEM

experience measured in MW of capacity, then this may introduce bias to the estimates of

β and θ in Table 2. A correlation between experience measured so and project size may

result if developers or turbine OEMs associated with large projects in the past retain their

propensity for sizable offshore wind farms going forward.

The results of this robustness check would constitute a cause for concern if the coefficient

on turbine OEM experience flips its sign or is no longer statistically significant. I focus on

direction and statistical significance because the magnitude of the estimates in Table 3 is

not directly comparable to that in Table 2. The experience variables in Table 3 are not

logarithmically transformed as the values they take on when measured in total projects are

significantly smaller than when measured in total capacity. Regardless, the direction and

statistical significance of the coefficient on turbine OEM experience remain even when the

project size exogeneity assumption is relaxed. Thus, any potential bias introduced by this

assumption does not remove the association between OEM experience and CAPEX.

6.2.2 Selection Assumption Test

Table 4 displays results from a robustness check that simply adds turbine manufacturer

fixed effects to the primary OLS specifications in Table 2. In order to preserve statistical

power, the regressions in Table 4 include dummies for the most prominent turbine manufac-

turers that account for 95 percent of the installed capacity in the data set, which are Siemens

Gamesa, Vestas, Adwen, Senvion, Goldwind, and Envision.
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Table 4: Selection Test Results
(1) (2) (3)

VARIABLES log(CAPEX/W)

log(Developer Experience) 0.001 0.000 0.008
(0.008) (0.008) (0.009)

log(OEM Experience) -0.010 -0.021 -0.003
(0.023) (0.022) (0.022)

log(Average Turbine Rating) -0.261*** -0.302*** -0.267***
(0.082) (0.078) (0.082)

Observations 124 124 124
Adjusted R-squared 0.666 0.667 0.609
Country Fixed Effects Y Y Y
Time Fixed Effects Y Y N
Turbine Manufacturer Fixed Effects Y Y Y

Notes: Table reports regression coefficients with robust standard errors. The three specifications

are identical to those in Table 2 except with turbine manufacturer fixed effects added in. Dummies

were included for the turbine manufacturers Siemens Gamesa, Vestas, Adwen, Senvion, Goldwind,

and Envision, which account for 95 percent of capacity installed in the sample. *** p < 0.01, ** p

< 0.05, * p < 0.10.

The coefficients on OEM experience are no longer statistically significant. This would

suggest that the estimates in Table 2 face bias because of historical selection for low-cost

turbine OEMs. Following the logic laid out in Section 5.3, greater turbine OEM experience

did not necessarily reduce costs, but rather OEMs with inherently low costs captured market

share and gained experience as a result. Thus, the perennial selection concern with learning

curve analysis appears to be legitimate in this case, or, at the very least, it is difficult to

make a strong empirically founded argument that the offshore wind sector has experienced

significant learning-by-doing during its history.

It is worth noting that, even though they are no longer statistically significant, the co-

efficients on OEM experience are all still negative. In Column (2), the coefficient is almost

one standard error in magnitude less than zero. Also, the coefficients on turbine size remain
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negative and statistically significant. In fact, they are larger in magnitude than their coun-

terparts in Table 2, suggesting that additional cost reducing effects of larger turbines were

being falsely attributed to turbine OEM experience by the primary OLS specifications. This

only further suggests that turbine rating is one of the most important CAPEX reduction

drivers, or, at the very least, is more significant than learning-by-doing.5

7 Discussion

This section interprets the empirical estimates of θ in the context of previous learning

curve analyses and separately uses turbine size decision models to contextualize the empirical

estimates of δ, which represents the association between turbine size and CAPEX.

7.1 Learning Curve Interpretation

Even though the estimates of developer and turbine OEM learning-by-doing are not

statistically significant once I account for the selection concern, it is still instructive to

interpret the estimates of learning-by-doing by turbine OEMs from Table 2, especially so

they can be compared to learning estimates for other renewables and the cost reducing impact

of turbine capacity. In its simplest, single-factor form, as explained by Ibenholt (2002), the

learning curve can be formulated as

log(Ct) = αlog(Qt) + log(C0) + εt, (6)

5Table 2, Table 3, and Table 4 are based on commodity prices and wages in the year of full commissioning
of the observed wind farms. It could be argued that, given the lead time in building these projects, the
commodity price and wage data should be based in the year that construction begins for the observed wind
farms. Appendix A.3 presents versions of Table 2, Table 3, and Table 4 in which the data for these control
variables is from the year that construction commences. The results do not change significantly.
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where Ct and Qt are the cost and cumulative quantity produced of a good at time t, and

C0 is the initial cost, or the cost of the first unit produced. Learning curve analysis allows

researchers to identify simple correlations between industry or firm experience and produc-

tion costs. Even though my estimations of the coefficients of interest β and θ take into

account other factors related to reducing costs, they are analogous to α, which is often

called the learning parameter. The learning rate (LR), which uses the learning parameter

to estimate how much costs fall with each doubling in cumulative capacity produced, can be

mathematically derived as

LR = 1 − 2α. (7)

The estimates of θ in Table 2 thus translate to a learning rate of around 1.4 percent, indicating

that a doubling in the cumulative MW sold by a turbine manufacturer is associated with a

1.4 percent decrease in the CAPEX per watt of an offshore wind farm to which it is selling

its wares.

This estimate appears relatively low and certainly is when compared to the results of

previous empirical studies of learning rates among renewable technologies, which vary heavily

but tend to fall in the range of 5 to 20 percent (Rubin et al. 2015). It is worth noting that

most of these studies employ simple one-factor learning curves or two-factor learning curves.

These papers likely introduce some upward bias to their estimates of energy technology

learning rates by failing to account for economies of scale and exogenous technological change,

as argued by Nordhaus (2014). These studies also tend to analyze the effects of industry-

wide experience, rather than accounting for developer-specific or OEM-specific experience as

I do in my empirical strategy. Van Der Zwaan et al. (2012), who conduct perhaps the only
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prior study that focuses specifically on learning in offshore wind energy, find an industry-

wide learning rate of approximately 3 percent using data on offshore wind facilities fully

commissioned by 2008 and after controlling for commodity prices but not for turbine size,

water depth, and other factors. This estimate is closer to the ones presented in Table 2.

As mentioned above, the 1.4 percent learning rate loses statistical significance when the

selection concern is accounted for. In contrast, using the coefficients on turbine rating in

Table 4 and a formula analogous to that of the learning rate, a doubling in turbine capacity

is associated with a 19 percent decrease in unitized CAPEX. Even if the 1.4 percent learning

rate were statistically significant, it is substantially smaller, by an order of magnitude, than

the cost reductions associated with larger turbines.

7.2 Turbine Rating Interpretation

The robustness of the estimates of the coefficient on turbine rating likely confirms the

conventional wisdom that turbine size is an important CAPEX reduction driver, especially

when compared to the impact of developer and OEM experience. Two-factor learning curve

analyses of various renewables, which, ceteris paribus, display the relative returns to cu-

mulative experience and research and development spending, typically show that research

spending is the more important cost reduction driver (Rubin et al. 2015). A cursory glance

at the results in Table 2 and Table 4 would suggest that the offshore wind sector is no differ-

ent, with research-driven turbine innovation being more significant than turbine OEM and

developer experience in reducing costs.

These are interesting results given the context of how developers and turbine manufactur-
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ers choose turbine size to maximize profits at different sites.6 As part of an ongoing research

project, Richard Sweeney and Thomas Covert built a simple model representing this decision

(Sweeney 2020). For the sake of simplicity, the model only considers the turbine component

of a wind farm and removes the distinction between the developer and turbine OEM by con-

sidering a fully vertically integrated wind power company’s profit maximization problem.7

For each turbine, the company seeks to maximize profit π,

π = pr2v3 − ωr3, (8)

where p is the wholesale, power purchase agreement price, or feed-in tariff received per unit

of electricity produced, r is the radius of the circular area swept by the turbine blades, v

is the wind speed, and ω represents the manufacturing technology. The first term on the

right-hand side represents revenue, and the second term represents the manufacturing cost.

Up to a certain limit, power production from a wind turbine increases with the cube of

the wind speed and the square of the radius (Danish Wind Industry Association 2003). By

the square-cube law, while the area swept by the blades increases with the square of the

radius, the volume increases with the cube of the radius, explaining why r is cubed in the

6Profit maximization is not always the developer’s objective. A developer can only be profit maximizing if
it knows the electricity price it will be offered for its output. 119 of the 124 offshore wind farms in the
sample received government-set feed-in tariffs, so the profit-maximizing approach generally makes sense.
However, the remaining projects in the sample and most of the facilities currently under construction and
in earlier stages of development originated from competitive auctions. As described in Section 2.2, under
competitive procurement regimes, the developer must submit the lowest LCOE bid in order to secure the
project site in the first place. In turn, developers often hold RFPs directed at turbine OEMs, seeking to
simply minimize the LCOE of electricity produced by the turbines. It is thus instructive to investigate the
turbine size implications of a LCOE minimization model, which is done in Appendix A.4.

7Of course, developers and turbine manufacturers are separate entities in the real world. Still, Sweeney
and Covert find that the optimal turbine size suggested by this model is also obtained from a second price
procurement auction model that involves turbine OEMs bidding into an auction held by a distinct developer.
It is worth noting that their research focuses on the onshore wind industry, however.
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manufacturing cost term of the equation. It has been empirically observed that turbine

OEMs face diseconomies of scale in making turbines larger than 1 MW (Samadi 2016).

I make one modification to this model such that it can better represent the particularities

of the offshore wind sector. I include an installation cost term that is separate from the

manufacturing cost term. This is necessary because of how significant installation CAPEX

is for offshore wind, especially when compared to onshore wind and other renewables. I

assume a constant installation cost I for each turbine regardless of its size, which is plausible

because the marginal cost of creating a larger turbine foundation likely pales in comparison

to the upfront cost of drilling to create the foundation in the first place. The basic Sweeney

and Covert model then becomes

π = pr2v3 − ωr3 − I. (9)

I take the first-order condition with respect to r, and, after solving for optimal r∗, I find that

r∗ =
2pv3

ω
. (10)

This solution indicates that, conditional on manufacturing technology, the size of the turbine

should theoretically increase with the price of electricity and wind speed at a site. This helps

explain why offshore turbines are larger than their onshore counterparts, as wind speeds are

substantially higher at sea and, until recently, the feed-in tariffs offered to offshore wind

facilities were much greater than those provided to other renewables, let alone wholesale

market electricity rates.
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It is less clear why offshore wind turbines have been getting larger over time. With off-

shore wind feed-in tariffs decreasing and the shift to more competitive procurement regimes,

p has likely fallen on average. With regards to wind speed, or v, the locations of recent off-

shore wind farms are little different from those of their predecessors. This result for optimal

r∗ would thus imply that ω has decreased, indicating that the manufacturing technology has

improved. This mechanism is plausible but would require a completely different strand of

research, one focused on recovering the cost functions of turbine OEMs, to be confirmed.

The most important shortcoming of this model, however, is that I is not even present in

the expression for r∗. The reason why is that Equation (10) treats I as a fixed cost, which is

a result of the model’s focus on maximizing profits for an individual turbine rather than for

the whole offshore wind farm. The absence of I is problematic because it is widely agreed

that, for a given total installed capacity at an offshore wind farm, larger turbines reduce total

construction costs by requiring fewer installations in aggregate. Fewer installations means

fewer turbine foundations, array cables, and other balance-of-plant components (Snyder and

Kaiser 2009; Van Hoof and Velthuijsen 2018; Musial et al. 2019; New York Power Authority

2019; Jennings et al. 2020; Taylor et al. 2020). In essence, due to economies of scale, 6 MW

turbines require half as many installations as 3 MW turbines, and the overall project can be

installed more quickly.

To fully interpret my estimates of the coefficient on turbine rating, it will thus be nec-

essary to use this model to visualize unitized CAPEX. To do this, I divide the sum of

manufacturing and installation CAPEX by r2, which is a good approximation of the turbine
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capacity in watts as this quantity usually scales with the surface area swept by the blades:

ωr3 + I

r2
= ωr +

I

r2
. (11)

The result implies that, assuming the same manufacturing and installation technology

across turbines of different sizes, it is unclear if larger turbines actually lower CAPEX.

The model would suggest that the per-watt manufacturing CAPEX is higher and per-watt

installation CAPEX lower for larger turbines, and the aggregate effect depends on the relative

magnitude of the increase and decrease. My empirical estimates of the coefficient on turbine

rating suggest that larger turbines are associated with lower CAPEX per watt, theoretically

implying that the decrease in installation CAPEX has historically dominated the increase

in manufacturing CAPEX in magnitude. As mentioned above, there are tremendous scale

economies from installing larger turbines, so further research investigating the importance

of this potential causal mechanism in explaining the relationship between turbine size and

costs may be useful.

This result presents an interesting empirical puzzle. If larger turbines reduce total

CAPEX, then developers should always select the largest available turbines when devel-

oping any given site. Developers would not face an increased unitized CAPEX and would

actually pay even less upfront in order to take advantage of the long-term benefits provided

by larger turbines, such as lower operations and maintenance costs and access to the higher

wind speeds at greater altitudes (Scheu and Stegelmann 2019).8 This conclusion seems too

good to be true and is belied by the data. Figure 5, which plots the average turbine rating

8v could also thus be considered a function of r.
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of each offshore wind farm against the year in which the facility was fully commissioned,

shows that, even though there has been a clear historic trend towards larger turbines, many

developers were still opting for relatively small (<4 MW) turbines into the late 2010s.

Figure 5: Turbine Rating Over Time

Notes: Each point corresponds to a unique wind farm, plotting its average turbine capacity in MW

against the year when it was fully commissioned.

I turn to insights from industry stakeholders and researchers to understand this inconsis-

tency. During interviews, representatives from Ørsted, Northland Power,9 Siemens Gamesa,

and BNEF note that one major reason some developers have chosen smaller turbines recently

is because there is inherent risk in selecting newer, larger turbines that have less of a track

9Another developer.
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record in real-world applications. Given that higher-capacity turbines often have price tags

upwards of 10 million dollars, even a slightly risk-averse developer may not want to be an

early adopter. Other explanations provided by these stakeholders and academics include

governmental permitting constraints, often stemming from environmental considerations,

and the fact that Chinese turbine OEMs, which take advantage of a strong home market

bias, are lagging behind their European rivals in turbine development. This has resulted in

fully commissioned Chinese offshore wind farms usually using turbines with ratings below 5

MW.

8 Extension: Future Cost Predictions

In this section, I test the predictive power of the CAPEX model from the selection as-

sumption test, the results of which are detailed in Table 4. Specifically, I compare the model’s

CAPEX estimates for future offshore wind farms against estimates provided by project devel-

opers in the 4C Offshore dataset. I use the selection test specifications because they identify

omitted variable bias in the regular OLS specifications’ estimates of the coefficients on de-

veloper and OEM experience. I specifically use the model detailed in Column (2) because it

does not include commodity prices other than steel, which appear to have little predictive

power, and includes the year fixed effects instead of the onshore wind CAPEX proxy for

exogenous technological change.

I test the model on all non-demonstration wind farms that are projected to be fully

commissioned in the five years after the end of the sample, which is a period that runs from

2020 to 2024. I only include wind farms that have data for all of the relevant variables in
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the model, such as turbine rating, project size, and water depth. I also exclude floating

wind farms, as they utilize a significantly different technology. I remove any facilities that

do not have total CAPEX estimates in the 4Coffshore data such that I can compare CAPEX

estimates from my model to those quoted by the developers. It is worth noting that developer

quotes may not accurately estimate a wind farm’s cost before it is fully commissioned, which

is one of the main reasons why the sample used for the primary analyses in this paper only

includes wind farms fully commissioned by the end of 2019. All of these sampling restrictions

leave 66 offshore wind farms that are projected to be fully commissioned between 2020 and

2024.

Regarding the predictive model itself, I rerun the model displayed in Column (2) of Table

4 without the steel price, wage, and developer experience variables. I exclude steel price

and wage because of a lack of reliable future data for these variables. I exclude developer

experience because of its negligible effect on CAPEX and difficulties in measuring it for

future offshore wind farms. Figure 6 displays the in-sample and out-of-sample CAPEX

estimates from the model, the actual in-sample CAPEX values, and the developer quotes

for the out-of-sample CAPEX values. Table 5 has summary statistics on the percent error

of the out-of-sample predictions.

Figure 6 and Table 5 together suggest that the prediction model is not particularly

accurate outside of the sample, with a mean percent error of 26 percent. The model appears

to systematically underestimate the CAPEX for future wind farms. One explanation may

be that larger turbines will not continue to be as strongly associated with reduced costs in

the future as they were in the pre-2020 data that the prediction model is based on. Even
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Figure 6: CAPEX Predictions vs. Developer Quotes

Notes: Each point corresponds to a unique wind farm, plotting the prediction model’s CAPEX

estimate against the actual CAPEX value (if in-sample) or the developer’s quoted CAPEX estimate

(if out-of-sample). Plotted values are logarithmic transformations of unitized CAPEX, which in

turn is in terms of 2019 USD.

Table 5: Prediction Error Summary Statistics

Notes: Error measured as absolute value of the percent error.

with the prediction error, the clustering of the out-of-sample predictions and the developer

quotes around a unitized CAPEX of around $2.70 (after taking the antilogarithmic trans-

formation) suggests that global offshore wind CAPEX is continuing its post-2013 down-
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ward trend. This potentially suggests that more massive turbines will still be an important

CAPEX reduction force in the near future.

9 Conclusion

As far as I know, this is the first paper to test in an econometrically rigorous manner

whether there is learning-by-doing in the offshore wind industry. It is also among the first

papers to empirically document the relationship between offshore turbine rating and costs.

Using a cost minimization model of the development process, I measure the returns to expe-

rience for both offshore wind developers and turbine manufacturers, finding evidence of no

statistically significant learning-by-doing among either developers or turbine manufacturers

once I account for the empirical threat of market selection for low-cost firms. In contrast,

higher-capacity turbines are strongly associated with unitized CAPEX reductions across all

of the specifications. A doubling in average turbine rating is associated with a 19 percent

decrease in CAPEX per watt of installed capacity, corroborating the consensus among in-

dustry stakeholders and research analysts about the importance of larger turbines. Further

research building off of the models presented in Section 7.2 will be important in establishing

the potential causal mechanisms behind this relationship. Together, these results suggest

that the common argument that aggressive policy-driven deployment of renewables can be

justified because it takes advantage of a steep learning curve may hold less weight when

it comes to offshore wind policy design.10 As a result, many of the demand-pull policies

10As mentioned in Section 3.2, welfare-maximizing governments should only subsidize output from industries
on the basis of learning-by-doing if there exists non-appropriable learning, which is a positive externality.
The lack of firm-specific, or appropriable, learning in the offshore wind industry as indicated by the results
of this study makes it very unlikely that there has been non-appropriable learning in the sector.
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that are currently in place in offshore powerhouses like the United Kingdom and the Euro-

pean Union, such as future capacity targets, may require an alternative justification in these

mature markets.

This is not to say that governments should play no role in the sector. In nascent markets

like that in the United States, states and the federal government will play an important role

in preparing grid transmission for the massive projects scheduled to be built in the next ten

years. Demand-side national or subnational build-out plans may actually still be relevant in

such countries without developed offshore wind supply chains, as aggressive capacity targets

in the 2002-2011 period in Northwestern Europe helped the region’s industry secure criti-

cal investment for upgrading its supply chain. For all countries interested in offshore wind,

government research and development spending with regards to turbine innovation may be

prescient given the cost reducing impacts of larger turbines. Governments could also facili-

tate greater knowledge sharing among prominent turbine OEMs, such as Siemens Gamesa,

Vestas, and Goldwind, in order to accelerate the development of higher-rated turbines. Such

policies would not be unprecedented, as European governments like Denmark’s have previ-

ously supported common large-scale test facilities for various offshore wind components and

turbines (Gottlieb et al. 2019).

It is possible that the learning rate, which is an inherently dynamic concept, may actually

manifest as the industry continues to mature. Several competitively procured projects that

have secured revenue offtake structures but are currently seeking permitting or are under

construction (and were thus excluded from my sample) have won government-organized

auctions with extremely low bids, suggesting that the post-2013 trend of falling CAPEX is

only set to accelerate (Evans 2019). When they come into commercial operation as early
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as 2023, some of these projects are expected to produce cheaper electricity than existing

natural-gas-fired power plants. The results of this paper would imply that these bids are

most likely being driven down by contracts for larger turbines rather than by any learning

effect. Regardless, policy will need to shift accordingly to maximize deployment in order to

advance climate mitigation while minimizing costs faced by ratepayers.
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A Appendix

A.1 Data

To create the sample, I first filter the 4C Offshore Wind Farm Online Database for

non-demonstration projects fully commissioned by the end of 2024 and copy and paste the

remaining rows into a new Excel spreadsheet called “4Coffshore Stata v2.xlsx.” The Stata .do

file located here details the data cleaning steps, which include correcting inaccurate/empty

observations and merging in external control variable datasets. In order to calculate the

developer and OEM experience variables, the .do file outputs an intermediary Excel spread-

sheet labelled “developer experience raw.xlsx,” which should be fully copied and pasted into

cell A1 of another spreadsheet labelled “developer experience.xlsx.” For the Project Size Ex-

ogeneity Test (Table 3), “developer experience raw.xlsx” should be fully copied and pasted

into cell A1 of another spreadsheet labelled “developer experience v2.xlsx.” The two “non-

raw” spreadsheets are read in sequentially by the Stata .do file. Versions of these two

spreadsheets with the formulae but without the data (because of proprietary concerns) are

located here. The publicly available datasets, which are the currency converter, FRED ce-

ment manufacturing PPI dataset, and the IRENA Onshore Wind CAPEX dataset, are also

located here.
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A.2 Total (Non-Unitized) CAPEX Alternative Results

The purpose of this appendix is to quell concerns about qi appearing on both sides of

Equation (5). Unitized CAPEX is used throughout the main paper for the sake of inter-

pretability and compatibility with prior literature. Table 6, Table 7, and Table 8 are anal-

ogous to Table 2, Table 3, and Table 4, respectively, except these tables use total CAPEX,

rather than unitized CAPEX/W, as the dependent variable. As a result, the specifications

in these tables only place qi on the right-hand side of the equation. Even with this approach,

however, the results do not change significantly. The magnitude and direction of the coeffi-

cients on the variables of interest, which are developer experience, turbine OEM experience,

and turbine rating, are basically identical to their counterparts in Table 2, Table 3, and

Table 4. The most notable change is that the coefficient on project capacity now indicates

that increasing offshore wind farm size by 1 percent is associated with approximately a 1

percent increase in CAPEX. This close relationship is a result of the fact that the coefficient

on project capacity now accounts for the direct relationship between size and total costs in

addition to scale economies.
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Table 6: Total CAPEX OLS Results
(1) (2) (3)

VARIABLES log(CAPEX)

log(Developer Experience) 0.001 0.000 0.007
(0.007) (0.007) (0.008)

log(OEM Experience) -0.016** -0.018** -0.016**
(0.007) (0.007) (0.007)

log(Average Turbine Rating) -0.222*** -0.263*** -0.214***
(0.075) (0.076) (0.081)

log(Project Capacity) 0.959*** 0.951*** 0.980***
(0.035) (0.034) (0.030)

log(Steel Price) 0.090 -0.023 0.241**
(0.242) (0.126) (0.109)

log(Copper Price) 0.119
(0.374)

log(Wage) 0.171*** 0.181*** 0.122***
(0.045) (0.044) (0.042)

log(Oil Price) -0.164
(0.208)

log(Cement Price) -0.758
(0.581)

Water Depth 0.013*** 0.012*** 0.013***
(0.003) (0.003) (0.003)

Competitive Procurement -0.054 -0.053 -0.097
(0.124) (0.123) (0.135)

Average Onshore CAPEX/W 0.129
(0.208)

Observations 124 124 124
Adjusted R-squared 0.971 0.971 0.966
Country Fixed Effects Y Y Y
Time Fixed Effects Y Y N

Notes: Table reports regression coefficients with robust standard errors. Developer and OEM

Experience are measured in total MW of capacity developed and total MW of turbines sold prior

to the observed wind farm, respectively. Steel price, copper price, oil price, cement price, and

weighted average onshore CAPEX are aggregated globally and annually. Wage is aggregated by

country and annually. The “Competitive Procurement” dummy equals 1 if the project received

revenue under a competitive procurement, 0 otherwise. All CAPEX and price variables are in 2019

USD. *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table 7: Total CAPEX Project Size Exogeneity Test Results
(1) (2) (3)

VARIABLES log(CAPEX)

Developer Experience -0.002 -0.002 0.001
(0.005) (0.005) (0.006)

OEM Experience -0.003*** -0.003*** -0.003**
(0.001) (0.001) (0.001)

log(Average Turbine Rating) -0.178** -0.214*** -0.176**
(0.073) (0.073) (0.078)

Observations 124 124 124
Adjusted R-squared 0.971 0.971 0.965
Country Fixed Effects Y Y Y
Time Fixed Effects Y Y N

Notes: Table reports regression coefficients with robust standard errors. The three specifications

are identical to those in Table 6 except developer and OEM experience are measured in total

projects developed and total projects to which turbines were sold prior to the observed wind farm,

respectively. These experience variables are not logarithmically transformed. *** p < 0.01, ** p <

0.05, * p < 0.10.

Table 8: Total CAPEX Selection Test Results
(1) (2) (3)

VARIABLES log(CAPEX)

log(Developer Experience) 0.001 0.000 0.008
(0.008) (0.008) (0.009)

log(OEM Experience) -0.010 -0.021 -0.003
(0.023) (0.022) (0.022)

log(Average Turbine Rating) -0.261*** -0.302*** -0.267***
(0.082) (0.078) (0.082)

Observations 124 124 124
Adjusted R-squared 0.971 0.971 0.965
Country Fixed Effects Y Y Y
Time Fixed Effects Y Y N
Turbine Manufacturer Fixed Effects Y Y Y

Notes: Table reports regression coefficients with robust standard errors. The three specifications

are identical to those in Table 6 except with turbine manufacturer fixed effects added in. Dummies

were included for the turbine manufacturers Siemens Gamesa, Vestas, Adwen, Senvion, Goldwind,

and Envision, which account for 95 percent of capacity installed in the sample. *** p < 0.01, ** p

< 0.05, * p < 0.10.
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A.3 Construction Year Alternative Results

Table 9, Table 10, and Table 11 are analogous to Table 2, Table 3, and Table 4, re-

spectively, except these tables use commodity price and wage data from the year in which

construction commences (instead of the year of full commissioning) for the observed offshore

wind farms. It could be argued that this approach to incorporating the control variable data

is better because of the lead time in construction offshore wind farms, which leads to a lag

between when capital components are ordered and a project is actually completed. Even

with this approach, however, the results do not change significantly. The magnitude of the

coefficients on the variables of interest is only slightly different. The most notable change is

that the coefficient on developer experience is now negative in all three tables, which may

suggest that developers have experienced some learning-by-doing. These estimates are not

statistically significant, though.
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Table 9: Construction Year OLS Results
(1) (2) (3)

VARIABLES log(CAPEX/W)

log(Developer Experience) -0.012 -0.013 -0.006
(0.008) (0.008) (0.009)

log(OEM Experience) -0.023*** -0.024*** -0.017**
(0.008) (0.007) (0.007)

log(Average Turbine Rating) -0.294*** -0.306*** -0.258***
(0.087) (0.086) (0.078)

log(Project Capacity) -0.036 -0.035 -0.013
(0.033) (0.033) (0.031)

log(Steel Price) -0.122 0.065 0.368***
(0.290) (0.115) (0.082)

log(Copper Price) 0.102
(0.432)

log(Wage) 0.238*** 0.245*** 0.198***
(0.043) (0.042) (0.047)

log(Oil Price) 0.230
(0.190)

log(Cement Price) -0.373
(0.792)

Water Depth 0.013*** 0.012*** 0.012***
(0.003) (0.003) (0.003)

Competitive Procurement -0.012 -0.023 -0.069
(0.141) (0.134) (0.161)

Average Onshore CAPEX/W 0.011
(0.201)

Observations 124 124 124
Adjusted R-squared 0.691 0.695 0.643
Country Fixed Effects Y Y Y
Time Fixed Effects Y Y N

Notes: Table reports regression coefficients with robust standard errors. Developer and OEM

Experience are measured in total MW of capacity developed and total MW of turbines sold prior

to the observed wind farm, respectively. Steel price, copper price, oil price, cement price, and

weighted average onshore CAPEX are aggregated globally and annually. Wage is aggregated by

country and annually. The “Competitive Procurement” dummy equals 1 if the project received

revenue under a competitive procurement, 0 otherwise. All CAPEX and price variables are in 2019

USD. *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table 10: Construction Year Project Size Exogeneity Test Results
(1) (2) (3)

VARIABLES log(CAPEX/W)

Developer Experience -0.006 -0.006 -0.003
(0.005) (0.005) (0.007)

OEM Experience -0.003** -0.003*** -0.002*
(0.001) (0.001) (0.001)

log(Average Turbine Rating) -0.229*** -0.242*** -0.215***
(0.084) (0.084) (0.075)

Observations 124 124 124
Adjusted R-squared 0.677 0.678 0.637
Country Fixed Effects Y Y Y
Time Fixed Effects Y Y N

Notes: Table reports regression coefficients with robust standard errors. The three specifications

are identical to those in Table 9 except developer and OEM experience are measured in total

projects developed and total projects to which turbines were sold prior to the observed wind farm,

respectively. These experience variables are not logarithmically transformed. *** p < 0.01, ** p <

0.05, * p < 0.10.

Table 11: Construction Year Selection Test Results
(1) (2) (3)

VARIABLES log(CAPEX/W)

log(Developer Experience) -0.014 -0.014 -0.007
(0.009) (0.009) (0.010)

log(OEM Experience) -0.011 -0.017 -0.001
(0.020) (0.019) (0.020)

log(Average Turbine Rating) -0.330*** -0.343*** -0.301***
(0.094) (0.094) (0.083)

Observations 124 124 124
Adjusted R-squared 0.684 0.686 0.639
Country Fixed Effects Y Y Y
Time Fixed Effects Y Y N
Turbine Manufacturer Fixed Effects Y Y Y

Notes: Table reports regression coefficients with robust standard errors. The three specifications

are identical to those in Table 9 except with turbine manufacturer fixed effects added in. Dummies

were included for the turbine manufacturers Siemens Gamesa, Vestas, Adwen, Senvion, Goldwind,

and Envision, which account for 95 percent of capacity installed in the sample. *** p < 0.01, ** p

< 0.05, * p < 0.10.
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A.4 LCOE Version of Sweeney and Covert Model

In this section, I modify the Sweeney and Covert model to find the optimal turbine size

assuming the developer purchasing the turbines is seeking to minimize the LCOE rather

than maximize profits at a given project site. As a reminder, LCOE is a measure of the

average present-value cost of each unit of electricity produced by a power plant over its

lifetime. In the competitive procurement regimes that secured revenue offtake structures for

5 of the 124 wind farms in the sample and for most of the offshore wind farms currently

under development or construction, developers win by submitting the lowest LCOE-based

bid. In these cases, cost (and specifically LCOE) minimization is more important than profit

maximization.

To roughly approximate the LCOE, I simply divide the CAPEX associated with the

turbine by its projected power output and ignore the discount rate and OPEX inputs in the

conventional LCOE formula. As mentioned in Section 2.1, the largest component of LCOE

is CAPEX, so this approximation is still valid. Finding the turbine size that minimizes this

estimate of the LCOE involves writing an equation like

argminr
ωr3 + I

r2v3
. (12)

Taking the FOC and solving for r∗, I find that

r∗ =
3

√
2I

ω
s.t.

ωr∗3 + I

r∗2v3
≤ p. (13)

The constraint ensures that the capital investment in the wind turbine at least breaks
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even over the lifetime of the wind farm. The constraint checks that the LCOE is no greater

than the electricity price the developer receives assuming the developer wins the auction.

This result is similar to Equation (11) in that r∗ is decreasing in ω. One difference is that

r∗ no longer depends explicitly on v, which is interesting because v is a major determinant

of a wind farm’s output over its lifetime. The exclusion of v from r∗ is perhaps an artifact

of the simplicity of the model. The key improvement from the profit maximization model

is that r∗ is now increasing in I, meaning that, as per-turbine installation costs increase, it

is better to have larger turbines. This follows from the logic described in Section 7.2, as,

given a fixed capacity for the entire wind farm, larger turbines require fewer installations in

aggregate.

57



References

Abernathy, William J. and Kenneth Wayne. 1974. “Limits of the Learning Curve”
Harvard Business Review 52 (9).

Anderson, John W., Gordon W. Leslie, and Frank A. Wolak. 2019. “Measuring the
Impact of Own and Others’ Experience on Project Costs in the U.S. Wind Generation
Industry.” National Bureau of Economic Research Working Paper 26114.

Benkard, C. Lanier. 2000. “Learning and Forgetting: The Dynamics of Aircraft Produc-
tion.” The American Economic Review 90 (4): 1034-54.

Bollinger, Bryan and Kenneth Gillingham. 2019. ”Learning-by-Doing in Solar Pho-
tovoltaic Installations.” SSRN Electronic Journal.

BVG Associates. 2019. “Guide to an Offshore Wind Farm.” BVG Associates.
https://bvgassociates.com/cases/guide-offshore-wind-farm/

Crabtree, Christopher J., Donatella Zappalá, and Simon I. Hogg. 2015. ”Wind
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