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Abstract

Learning how to utilize new technologies is a key step in innovation, yet little is known about how
firms actually learn. This paper examines firms’ learning behavior using data on their operational
choices, profits, and information sets. I study companies using hydraulic fracturing in North Dakota’s
Bakken Shale formation, where firms must learn the relationship between fracking input use and oil
production. Using a new dataset that covers every well since the introduction of fracking to this forma-
tion, I find that firms made more profitable input choices over time, but did so slowly and incompletely,
only capturing 67% of possible profits from fracking at the end of 2011. To understand what factors
may have limited learning, I estimate a model of fracking input use in the presence of technology un-
certainty. Firms are more likely to make fracking input choices with higher expected profits and lower
standard deviation of profits, consistent with passive learning but not active experimentation. Most
firms over-weight their own information relative to observable information generated by others. These
results suggest the existence of economically important frictions in the learning process.

1 Introduction

New technologies are important contributors to economic growth1, but little is known about how

firms learn to profitably use them. While there is longstanding evidence that firms learn from

their own experiences (learning-by-doing), and from others (social learning), the specific actions

that firms actually take in learning are not well understood. Models of learning predict that

firms efficiently analyze information about new technologies, invest in experiments to create new

information, and incorporate information generated by other firms.2 However, to test these models,

∗Harvard Business School and Harvard University Department of Economics; tcovert@hbs.edu. I am grateful to Paul
Asquith, Bharat Anand, Greg Lewis, Ariel Pakes and Parag Pathak for their guidance and encouragement. I thank Michael
Luca, Thomas G. Wollman, Richard Sweeney, Bryce Millet-Steinberg, Stephanie Hurder, Alex Peysakhovich, Evan Herrnstat,
Joseph Shapiro, Hugh Daigle, Heath Flowers, Chris Wright, Leen Weijers and the Harvard Industrial Organization, Envi-
ronment Economics, and Work-In-Progress lunches for their helpful comments and discussions. Funding from the Harvard
Business School Doctoral Programs, a Harvard University Dissertation Completion Fellowship and the Sandra Ohrn Family
Foundation is gratefully acknowledged.

1See, for example, Arrow (1962), Romer (1986) and Kogan et al. (2012)
2See Aghion et al. (1991) in the single agent context and Bolton and Harris (1999) in the multi-agent context.

1



it is necessary to observe data on the information that firms have, which is difficult to acquire in

many empirical settings. This paper tests predictions of learning models for the first time, using

data on oil companies that employ hydraulic fracturing (fracking) in the North Dakota Bakken

Shale. The data covers operational choices, profits, and measures of the information firms had

when making choices. The oil companies in this data learn to use fracking more profitably over

time, but are slow to respond to new information, avoid experiments and underutilize data provided

by their competitors.

Fracking is a useful context to study learning behavior in firms. The profit maximizing choice of

fracking inputs may vary across drilling locations in unpredictable ways, so firms must empirically

learn this relationship over time and change their behavior accordingly. In North Dakota, firms

can learn about fracking from a wealth of publicly available information. Regulators collect and

publicly disseminate unusually detailed, well-specific information about oil production and fracking

input choices. Moreover, regulators delay dissemination until 6 months after a well is fracked,

making it possible to measure differences in knowledge about fracking across firms. The industry

is not concentrated, which motivates studying learning as a single agent problem. During the time

period I study, there are 70 active firms, the market share of the largest firm is only 13% and the

combined share of the five largest firms is under 50%. The two main inputs to fracking, sand and

water, are commodities, as is the output of fracking, crude oil. The unique regulation and industry

structure make fracking in the Bakken shale an unusually compelling setting for studying learning

in firms. Moreover, the stakes in fracking are large. Using a production function, I estimate that

the average NPV of profits per well for actual fracking choices is about $12.8 million, while the

average profit for each well’s most profitable choice is $24.5 million. Since the regulator in North

Dakota expects that 40,000 wells will eventually be fracked over the next 18 years, the potential

for lost profits from inefficient learning is substantial.3

Learning-by-doing and social learning are both important in this context. Between 2005 and

2006, the average well is fracked by a firm that had fracked only a single well before. By 2011, the

average well is fracked by a firm that had previously fracked 117 wells. Thus, firms can learn from

an increasing amount of their own experience. However, North Dakota’s disclosure laws make it

possible for firms to study their competitors’ data. Between 2005 and 2006, the average well is

3See https://www.dmr.nd.gov/oilgas/presentations/NDOGCPC091013.pdf
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fracked by a firm that can observe 10 wells previously fracked by other firms, a number which rises

to 1,783 in 2011. As a result, most of the information firms have comes from others, and firms

have the ability to socially learn.

The data I collect from the regulator in North Dakota is well suited to estimate the relationship

between location, fracking, and oil production. I observe the complete operating history of every

firm and every well they frack in the Bakken Shale between January 2005 and December 2011 (70

firms and 2,699 wells), so there is no possibility for survivorship bias. The data contains precise

measurements of a well’s production, location and most important fracking inputs, so there are no

endogenous omitted variables. Moreover, the engineering requirements for wells drilled into the

Bakken prevent firms from selecting observed fracking inputs on the basis of information I do not

observe. Thus, the standard endogeneity problem in production function estimation is unlikely to

be a concern.

Using the data I collect, I semi-parametrically estimate a production function for fracking which

represents what firms need to learn. These estimates show that amount of oil in the ground and

the sensitivity of its production to fracking both vary over space, a result that is consistent with

geological theory and data. Estimates made using subsets of the data that were available to firms

when they were fracking have qualitatively similar results, suggesting that firms could have used

this data to make informed fracking decisions. The estimated production function fits the data

well and is stable across robustness tests.

I use this production function to measure how quickly firms learn. Wells fracked in 2005 capture

only 16% of the profits that optimally fracked wells would have produced. However, profit capture

grows almost monotonically over time, with firms capturing 68% of maximal profits in 2011. This

growth is driven by improved fracking input choices, with firms gradually increasing their use of

sand and water towards optimal levels over time. I interpret this upward trend in the profitability

of fracking input choices as evidence for learning.

Existing research measures learning from upward trends in productivity, or residual production

that is not explained by input choices. I test for productivity based learning by analyzing the

growth of estimated production function residuals over time. Wells fracked in 2011 are 34%

more productive than wells fracked in 2005, suggesting some role for productivity-driven learning.

However, the majority of the growth in productivity occurs by 2008, and there is no statistically
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significant difference in productivity between 2008 and 2011. This contrasts with the fraction of

profits captured, which increases monotonically over time, and from 44% to 67% between 2008 and

2011. Thus, during 2008-2011, when 95% of wells in my data are fracked, there is little productivity

growth, even though there is substantial growth in the fraction of profits captured. These results

help clarify the difference between models of learning in which knowledge is a direct input in the

production function, and a model of learning about the production function itself.

To see if firms are using their information to make better fracking choices over time, I estimate

ex ante production functions for each well, using the subset of the data that firms had when they

were making choices. I use these estimates to compute ex ante profits. Though firms capture 76%

of ex ante optimal profits in 2007, they capture only 68% in 2011. The fraction of ex ante profits

falls because initial fracking input choices are close to the (then) estimated optimal levels, but

optimal levels subsequently change more quickly than choices do.

Theory predicts that firms may sacrifice estimated profits in the current period by experi-

menting in order to generate information for the future. To test if experimenting behavior can

rationalize the decline in the fraction of estimated ex ante optimal profits captured, I estimate

a simple model of fracking input choice under technology uncertainty. In this model, firms have

preferences over the expectation and standard deviation of their ex ante estimates of profits for a

fracking input choice. If firms are experimenting, they should be empirically more likely to choose

inputs with higher standard deviations of profit. I do not find support for this theory. Firms are

more likely to select fracking designs with higher expected profits and lower standard deviation

of profits. Firms are indifferent between a $0.60-$0.98 increase in expectation of profits and a $1

reduction in the standard deviation of profits.

My calculation of the expectation and standard deviation of profits assumes that firms equally

learn from their own and others’ experiences. However, firms may treat the social portion of

their data differently than the data they directly experience, and in the process form different

estimates of profits than what I calculate. To account for this possibility, I modify my fracking

input choice model to allow for weighted production function estimates estimates. I use this model

and data on firms’ choices to estimate the weight they place on their own experiences relative to

their competitors’ experiences. Most firms place more weight on their own experiences than their

competitors’ experiences. Even after controlling for weighted estimates, firms still prefer fracking
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choices with lower standard deviations and higher means.

This paper finds that firms are reluctant to experiment and ignore valuable data generated by

their competitors. These firms are not unsophisticated or under-incentivized. They have access to

capital markets, are managed by executives with engineering and business education and are the

primary equity holders in the wells they frack. These findings stand in contrast to some theories

of efficient learning behavior by rational agents, which predict that firms will take experimental

risk and learn from all the information they have.

In addition to its usefulness as a laboratory to study learning, fracking plays a prominent role in

current public policy debates about growing oil production and its effects on the environment. The

US EIA reports that fracking has caused national oil production to grow 22% since 2009, reversing

almost two decades of declines.4 There is early evidence that fracking-driven resource booms

have affected housing prices5 and local banking markets.6 However, there are growing concerns

about the potential for fracking to negatively affect the quantity and quality of local ground

water supplies,7 which the US EPA is currently studying.8 In response to these concerns, federal

regulators have proposed significant increases to disclosure requirements for fracking operations.9

Though this push for increased transparency around fracking is driven by environmental concerns,

new disclosure regulations may also have an impact on learning by increasing the availability of

data.

Finally, the Bakken Shale unlikely to be the last oil and gas formation where fracking and

the learning it requires play an important role. Fracking is currently in use in the Eagle Ford

and Barnett Shales in Texas, the Woodford Shale in Oklahoma, and several locations in Canada.

International oil companies are now developing shale resources in Argentina, Poland and China.

The results of this paper may be useful to both policy makers and oil & gas companies alike in

regulating access to information and understanding the benefits of more efficient learning behavior.

4http://www.eia.gov/todayinenergy/detail.cfm?id=13251
5Muehlenbachs et al. (2012) find that housing prices increase after the introduction of fracking to a community, except

for houses that depend on groundwater.
6See Gilje (2012)
7See Vidic et al. (2013) for an overview
8See http://www2.epa.gov/hfstudy
9See Deutsch (2011).
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1.1 Related literature

Firms in many industries and time periods have become more productive by learning from their

own experiences. Researchers studying the manufacturing of World War II ships (Thornton and

Thompson 2001), aircraft (Benkard 2000) and automobiles (Levitt et al. 2012) have documented

an important empirical regularity: with the same inputs, firms are able to produce more output

as they accumulate experience in production.10 That is, they learn by doing (LBD). The LBD

result that productivity is correlated with experience suggests that the knowledge embedded in

this experience is a direct input to the production function. Changes over time in capital, labor

and materials are thus interpreted as profit-maximizing responses to increases in productivity, not

changes in specific knowledge. In this paper, I instead assume that the production technology itself

is initially unknown and that experience has no direct impact on production. As firms accumulate

experience in fracking, they acquire more data about the fracking production function, perform

inference on this data, and make more profitable input choices on the basis of their inference. This

is similar to the approach taken by Foster and Rosenzweig (1995) and Conley and Udry (2010) in

the development literature.

Economic theory predicts that when firms are learning about a new technology, they face a

tradeoff between “exploration” and “exploitation” (or experimentation). Firms may actively learn

by experimenting with fracking input choices that have highly uncertain profits or passively learn

by exploiting choices with high expected profits. Except in the simplest theory models, the op-

timal amount of experimentation and exploitation is a challenging problem to solve. However,

most models of learning predict that forward-looking firms will always do some experimenting. In

the single agent context, Aghion et al. (1991) show that forward-looking firms will almost always

do some exploration. Bolton and Harris (1999) find a similar result in the multi-agent context.

Wieland (2000) employs computational methods to characterize the costs and benefits of explo-

ration, finding that firms who only exploit can get stuck, and repeatedly choose suboptimal actions.

To my knowledge, this paper is the first to empirically measure the amount of experimenting that

firms perform in a learning situation.

This paper adds to a wide literature documenting the existence and importance of social learn-

ing between firms. Most of this evidence is in agricultural settings. Ryan and Gross (1943),

10This phenomenon has also been observed by Anand and Khanna (2000) in the corporate strategy setting.
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Griliches (1957) and Foster and Rosenzweig (1995) demonstrate that farmers learn about the ben-

efits of adopting new technologies from the experiences of their neighbors. Conley and Udry (2010)

show that farmers in Ghana learn about the efficient use of fertilizer from other farmers in their

social networks, demonstrating that social learning in agriculture is not limited to the adoption de-

cision. Social learning has also been observed in manufacturing. During the construction of WWII

ships, Thornton and Thompson (2001) find that firms benefited from accumulated experience by

other firms. Similarly, Stoyanov and Zubanov (2012) find evidence that firms in Denmark became

more productive after hiring workers away from their more productive competitors.

Finally, this paper is complementary to the existing literature on learning behavior by oil and

gas companies. Levitt (2011) shows that the observed temporal and spatial patterns of the oil

exploration process match the predictions of a forward-looking learning model. In a study of

offshore drilling, Corts and Singh (2004) show that as oil companies gain experience with their

service contractors, they learn to trust them and tend to select low-powered contracting terms.

Kellogg (2011) studies this phenomenon in the on-shore setting and shows that oil companies and

their service contractors jointly learn to be more productive in drilling as they accumulate shared

operating experience.

The remainder of the paper is as follows. In Section 2, I provide institutional background on

fracking in North Dakota and describe the data I have on operational choices, production results

and information sets. Next, in Section 3, I estimate a production function model of fracking and

evaluate its ability to predict oil production. In Section 4, I use the production function estimates

to test if firms learned to make more profitable fracking choices over time. In Section 5, I specify

and estimate the model of fracking input choice under technology uncertainty. Finally, I conclude

in Section 6.

2 Institutional Background and Data

2.1 Fracking and US Oil Production

The hydraulic fracturing of shale formations, like the Bakken, has had a profound impact on the

fortunes of energy producing states and the US as a whole. In 2009, the US Energy Information

Administration reported that national oil production grew 6.8% year-over-year, the first increase in
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over two decades.11 This trend has continued and between 2009 and 2012, national oil production

increased 21.7%. Three states represent the majority of this growth: Texas, Oklahoma and North

Dakota. This paper focuses on what has happened in North Dakota.

In March 2012, North Dakota surpassed Alaska to become the second most prolific oil producing

state in the US, after Texas. Between January 2005 and July 2013, oil production in North Dakota

increased from 93,000 barrels (bbl) per day to 874,000 bbl per day. During the same time period,

total US oil production increased from 5.63 million bbl per day to 7.48 million bbl per day, meaning

that increased production in North Dakota amounted to 42% of the net increase in total production.

Though production increased in Texas and Oklahoma as well, it is striking that North Dakota went

from producing less than 2% of national oil production to almost 12% in the span of 8 years.12

This vast expansion in North Dakotan oil production coincided with the introduction of fracking

to the Bakken Shale formation.

2.2 The Bakken Shale and Hydraulic Fracturing

The Bakken Shale spans 200,000 square miles in North Dakota, Montana and Saskatchewan.13 It

lies 10,000 feet underground and contains 3 distinct layers: the upper Bakken member (a shale

layer), the middle Bakken member (a layer of sandstone and dolomite ), and the lower Bakken

member (also a shale layer). The US Geological Survey estimates that the upper and lower shales

together contain 4.6 billion bbl of recoverable oil.14 Though the middle Bakken member is not

formed from organic materal and as such does not generate any oil of its own, firms typically drill

horizontally through it and use hydraulic fracturing, or “fracking”, to make contact with the oil

bearing shales above and below, as shown in Figure 1.

Fracking is the process of pumping a mix of water, sand and chemicals into a well at high

pressures. The high pressure of the mix fractures the surrounding rock and the sand in the mix

props those fractures open.15 The fractures created by fracking the middle Bakken radiate outwards

11See the EIA Annual Energy Review, 2009. http://www.eia.gov/totalenergy/data/annual/archive/038409.pdf
12Texas also experienced production significant production increases during that same time period, though from a much

higher base level (from 1.08 million bbl per day to 2.62 million bbl per day, a 143% increase). Much of this increase can
also be attributed to the technology changes described here. Operators applied fracking technology successfully to the Eagle
Ford, Permian and Barnett shales.

13See Gaswirth (2013)
14See Gaswirth (2013)
15Chemicals reduce mineral scaling, inhibit bacterial growth, reduce wear and tear on fracking hardware and increase the

buoyancy of sand in the fracking mixture. See http://www.fracfocus.org for an overview.
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Figure 1: Diagram of a Hydraulically Fractured Bakken Shale well
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into the upper and lower Bakken shales, as shown in Figure 1. These fractures both serve as a

conduit between the wellbore in the middle Bakken and the upper and lower shales, and also

increase the permeability of the upper and lower shales.

Permeability is a geological measure of the ease at which oil naturally flows through rock. The

upper and lower shales are unusually impermeable, making it impossible for the oil they contain

to naturally reach a wellbore drilled through the middle member. Without fracking, wells drilled

into the middle member will not produce profitable quantities of oil.16 After fracking, oil inside

the lower and upper shales can more easily travel through the new fractures into the wellbore in

the middle member.

Firms choose how much water and sand to use in fracking and this choice can have a large

impact on the profitability of a well. Wells fracked with more sand and water may produce more

oil than wells fracked with less, but fracking is expensive, and water and sand represent the bulk of

this expense. In 2013, the reported costs of fracking range from $2-5 million per well, out of total

well costs of $9 million.17 Thus, to maximize profits, firms must balance the benefits of sand and

water use in fracking with their costs. This requires firms to understand the relationship between

oil production and fracking inputs, and it is unlikely that firms initially knew this relationship.

The first Bakken wells to be developed with fracking were not drilled until 2005, and at the time,

the firms developing those wells had limited experience in fracking shale formations.18 Without

prior experience, firms had to learn how to use fracking by doing it themselves or by studying their

competitors.

There is now a growing literature about best practices in fracking. Petroleum engineers have

found that wells fracked with more water and sand are often more productive than similar wells

with less aggressive fracking treatments.19 However, there is also evidence that the relationship

between oil production and fracking inputs is not necessarily monotonic and that it varies over

16See Hicks (2012)
17See Hicks (2012)
18Fracking was first successfully used in shale formations in the 1990s. Under the hunch that permeability issues could

eventually be resolved through the use of fracking, Mitchell Energy worked for years on its own and with the help of the US
Department of Energy to learn how to apply fracking technology to the Barnett shale in Texas. They succeeded in 1997. See
Michael Shellenberger and Jenkins (2012). Two firms active in North Dakota, EOG and XTO, were active in the Barnett
as well. However, the Barnett Shale is different from the Bakken. Barnett wells are drilled directly into the shale layer, and
produce natural gas instead of oil. It is unlikely that any knowledge that these firms may have had about fracking in the
Barnett was useful in the Bakken.

19See Shelley et al. (2012)

10



drilling locations.20 Research documenting these results was not publicly available to firms during

the time period I study, which means that firms faced a complicated learning problem.

2.3 The Information Environment in North Dakota

Firms in North Dakota can learn about the relationship between oil production, location, and

fracking inputs from the past experiences of other firms. After a firm fracks a well, the oil and

gas regulator in North Dakota requires the firm to submit a well completion report, detailing

the well’s horizontal length, location and fracking inputs. Additionally, the regulator and tax

authorities require the firm to submit audited production records on a monthly basis. The regulator

publishes this information on the internet, making it easy for firms to learn information about every

previously fracked well in the state, including information about wells that they took no part in

developing.

North Dakota’s well confidentiality laws generate a 6 month delay between when firms submit

well completion reports and when the regulator makes them public. This delay creates differences

across firms in what wells they can learn from at each point in time, as the operating firm of a

well has a temporary knowledge advantage over other firms. However, the ownership structure

of mineral rights in a well mitigates some of these differences. Mineral rights for a well are often

owned by many separate firms. Every firm that owns mineral rights in the area spanned by a well

is entitled to pay a share of the capital expenditures needed to develop the well in exchange for

a share of the revenue generated by the well. The firm with the largest mineral rights claim in

a well is called the “operator”, and it retains all control rights, including the choice of the well’s

fracking inputs. The remaining owners of mineral rights are called “non-operating participants”.

Figure 2 depicts a hypothetical ownership situation for a well in the Bakken. The land spanned by

the well is a 2 mile by 1 mile rectangle, called a “spacing unit”. Within this spacing unit, Firm A

has the largest mineral rights claim, followed by firms B and C. The wellhead enters the ground in

A’s claim and the horizontal segment passes through B’s claim. Though the well does not directly

pass through C’s claim, it is close enough to C’s claim that it may be drawing oil from the claim.

While A retains control rights, B and C must pay their respective share of capital expenditures.21

20See Baihly et al. (2012)
21Firms can choose to opt out of a spacing unit, but that does not allow them to operate another well within the spacing

unit, so opt outs are rare.
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Figure 2: Diagram of a hypothetical spacing unit

Non-operating participants have immediate access to a well’s completion report.22 This means

that non-operating participants in a well are not subject to well confidentiality rules and thus

observe information regarding a well before the public does.

2.4 Data

2.4.1 Well Characteristics and Production History

I have collected operating and production data for every well targeting the Bakken shale formation

in North Dakota that was fracked between January 1, 2005 and December 31, 2011. This data

is reported by oil companies to the North Dakota Industrial Commission (NDIC), and the NDIC

publishes their submissions on the internet. For each well i, I observe the location of its wellhead

in latitude lati and longitude loni coordinates, its horizontal length Hi, the mass of sand Si and

volume of water Wi per foot of horizontal length used in fracking and the identity of the operating

firm fi. Additionally, I observe oil production Yit for well i in it’s t-th month of existence and

the number of days Dit during that month that the well was actually producing. Let Xit denote

22See Larsen (2011)
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the set (Hi, fi, Dit) and let Zi denote the set (Si,Wi, lati, loni). Then the dataset (Yit, Xit, Zi) has

a panel structure, where i indexes wells and t indexes well-specific timing. Though I only study

wells fracked during 2005-2011, I have production data through February 2013, making it possible

to study the performance of all wells for at least a year. While the production history is reported

electronically on the NDIC website, the static well characteristics are stored in PDF format, so

much of this dataset was entered into the computer manually. I also observe the “township” τi that

the wellhead lies in. Townships are 6 mile by 6 mile squares, defined by the US Geological Survey

and are a standard measure of location in the oil & gas business. There are 272 townships in North

Dakota with Bakken wells during 2005-2011. I have also collected the geographic boundaries of

the spacing units for every well. This data comes from various portions of the NDIC website.

Though most of the data I collect from the NDIC is self reported by firms, there are two reasons

why it is likely to be truthfully reported. First, oil and gas regulations in North Dakota specify

explicit penalties for failure to report required information and false reporting, including fines of

up to $12,500 per day per offense and felony prosecution.23 Second, because operators wish to

collect payment for capital expenditures from their non-operating partners, they must share the

documentation and billing they receive from their service contractors. If operators were to report

data to the NDIC that was at odds with what they had shared with their non-operating partners,

they might jeopardize their ability to collect payment.

Table 1 reports the cross-sectional distribution of well characteristics and oil production in the

first year. There is substantial variation across wells in both fracking input use and oil production.

The 75th percentiles of sand, water and oil production are more than double their respective 25th

percentiles. This variation will be important later on in estimating the relationship between oil

production and fracking inputs. Most wells have horizontal segments that are 9,000 feet or longer.

The length of a well’s horizontal segment is determined by the size of its spacing unit. Though

not shown in the table, approximately 75% of wells have rectangular spacing units that are two

miles wide and one mile tall. The remaining 25% have 1 mile square spacing units. The average

well produces almost 11 bbl per foot of horizontal length in its first year. Since the price of oil

averaged $76 per bbl during 2005-2011, the value of production in the first year for the average

well is worth $6.6 million. Most wells tend to produce on the majority of days during a month,

23See Section 38-08-16 in the NDIC Rulebook.
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Table 1: Summary Statistics

Variable Mean Std. Dev P25 P50 P75 N

lbs sand per foot 265.02 138.68 158.27 264.53 378.66 2,699
gals water per foot 188.87 110.73 100.31 181.70 249.52 2,699
horizontal feet in length 8,040 2,138 5,600 9,135 9,518 2,699
avg producing days per month 26.80 2.99 25.90 27.56 28.67 2,699
oil production per foot in first year 10.86 8.95 5.38 8.39 12.99 2,699
# non-operating participants 3.00 2.50 1.00 3.00 4.00 2,699
# past wells fracked by operator 80 82 16 49 125 2,699
# past wells fracked by others 1,089 658 511 1,062 1,698 2,699

Table 2: Summary Statistics by Year

2005 2006 2007 2008 2009 2010 2011

# wells fracked 10 20 94 352 463 691 1,069
# active townships 9 17 37 102 132 179 231

# active firms 5 11 17 28 34 47 49

Sand
Average 94.50 136.88 134.64 180.00 212.75 308.82 302.79
Std. Dev 22.01 152.43 143.15 146.79 145.32 121.68 110.85

Water
Average 49.53 64.29 95.67 108.28 137.08 215.14 232.68
Std. Dev 25.03 61.87 83.72 59.90 88.36 99.88 111.28

Length
Average 6,883 6,062 7,017 7,283 7,238 8,006 8,795
Std. Dev 1,679 2,001 2,048 2,233 2,316 2,144 1,715

Oil
Average 3.08 4.85 10.76 13.41 11.55 11.15 9.73
Std. Dev 1.94 7.59 13.72 15.16 9.83 6.72 5.78

and though not shown in the table, only 93 wells have fewer than 20 average producing days. The

bottom rows of Table 1 show the distribution of non-operating participants and past experience

across wells. In the average well, 3 other firms obtain knowledge about a well at the same time as

the well’s operator. The average well is fracked by a firm that has previously fracked 80 of its own

wells, and can observe the data on 1,089 wells fracked by others.

Table 2 shows the distribution of well characteristics and oil production. The number of wells

fracked and the number of active townships and firms all increase over time. More than 65% of

all wells are fracked during the last two years, and in 2011, wells are fracked in 85% of townships

by 70% of all firms. Over time, firms frack longer wells, using more sand and more water. Firms

operating in 2011 use more than three times as much sand and four times as much water per foot

of horizontal length, on average, as firms in 2005. However, average oil production does not rise

monotonically, reaching its peak in 2008 and then falling thereafter.

14



Table 3: Average First Year’s Oil Production per Foot of Horizontal Length by Quintiles of Sand and
Water Use

Quintiles of Water Use
First Second Third Fourth Fifth

Q
u

in
ti

le
s

of
S

an
d

U
se

First
8.09 8.27 6.77 8.82 10.16

(0.33) (0.44) (0.73) (2.20) (0.81)

Second
9.53 10.50 9.27 10.50 9.37

(0.37) (0.35) (0.33) (0.56) (1.37)

Third
10.25 11.51 10.91 10.56 10.81
(0.52) (0.36) (0.29) (0.35) (0.76)

Fourth
10.71 10.48 13.24 11.46 11.87
(0.52) (0.58) (0.55) (0.40) (0.48)

Fifth
10.80 12.24 13.37 13.19 13.85
(1.06) (0.83) (0.98) (0.52) (0.37)

Net of township fixed effects. Standard errors in parentheses.

Table 3 reports average oil production per foot by quintiles of sand and water use per foot.24

Across both sand and water use, the highest input levels are associated with higher oil production.

For every quintile of water use (columns), the top quintile of sand use has higher production than

the bottom quintile. For all but the second quintile of sand use (rows), the top quintile of water

use has higher production that the bottom quintile. Thus the data shows that sand and water use

affect oil production, though not strictly monotonically.

To verify the importance of spatial heterogeneity in the relationship between fracking inputs

and oil production, I estimate a simple Cobb-Douglas production function for fracking, with and

without township fixed effects. I regress the log of first years oil production per foot of horizontal

length on the well’s log sand use and log water use:

log oil per footi = α0 + αS logSi + αW logWi + τi + εi

Table 4 reports coefficient estimates for this regression. The first column shows estimates without

fixed effects, and the second column shows estimates with fixed effects. Consistent with the results

in Table 3, higher sand and water use are associated with higher production. This is true with and

without fixed effects. However, the inclusion of township fixed effects decreases the coefficient on

sand use and increases the coefficient on water use, suggesting the existence of spatial heterogeneity

24To control for the effects of location, I first subtract the average levels of oil production and input use per township from
actual production and input use. Then, I add back the overall average levels, creating township fixed effects.
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Table 4: Spatial Heterogeneity in the Relationship Between Sand, Water and Oil Production

(1) (2)
Log Oil per foot Log Oil per foot

α0 -0.0280 0.319
(0.104) (0.0948)

αS 0.352 0.208
(0.0211) (0.0183)

αW 0.0512 0.137
(0.0228) (0.0185)

Township FE X
N 2,698 2,698
R2 0.159 0.618

Standard errors in parentheses. OLS estimates of

log oil per footi = α0 + αS logSi + αW logWi + τi + εi

in oil production and the possibility that firms make different input choices in different locations.

2.4.2 Oil Prices

I collect the daily spot prices for West Texas Intermediate crude oil at the Cushing, Oklahoma oil

trading hub from the US Energy Information Administration. The Cushing price is the reference

price for oil futures traded on the NYMEX commodity exchange, and the Cushing hub is connected

to North Dakota through the Keystone and Enbridge pipeline systems. Figure 3 plots quarterly

average oil prices at the Cushing hub. Between 2005-2011, there was a boom and bust in oil prices,

with prices climbing from approximately $60 per bbl in early 2007, reaching more than $120 per

bbl in mid 2008 and falling to $45 per bbl in early 2009. In 2010-2011, when more than 65% of

the wells are fracked, oil prices average $87 per bbl.

2.5 Drilling and Fracking Costs

Though the NDIC does not require firms to report their costs, the legal process in North Dakota

occasionally makes this information public. In particular, when a non-operating mineral rights

owner decides not to participate in a well, the operator can ask the NDIC to impose a “risk

penalty”, which temporarily prevents the non-participant from earning revenue from its mineral
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Figure 3: Quarterly Average Cushing Oil Prices
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rights.25 In order to make this request, the operator must legally submit its estimate of the cost

of drilling and fracking the well, and this information is publicly recorded by the NDIC. Of the

2,699 wells in this dataset, the cost records for 90 are in the public domain for this reason.

These wells span several years, so to make their costs comparable, I normalize them using a

cost index. There is no single publicly available cost index that is both specific to the Bakken

and available for all of 2005-2011, so I construct one by combining several other indices. Between

the first quarter of 2005 and the fourth quarter of 2007, the index grows at the rate of the BLS

Producer Price Index for oil & gas extraction. Between the the first quarter of 2008 and the fourth

quarter of 2009, the index grows at the rate of a cost index for vertical wells drilled in North

Dakota, published by Spears & Associates, a private consulting firm.26 Finally, starting in the first

25A non-participating mineral rights owner faced with a risk penalty forfeits a significant portion of its share of the well’s
revenue. In North Dakota, risk penalties are set to 200% of a non-participant’s share of capital expenditures. This means
that non-participants do not earn any revenue from a well in which they own mineral rights until the well has generated
200% of its capital expenditures in oil production.

26Spears & Associates surveys independent engineers in North Dakota quarterly, asking them to estimate the cost of a
reference well. The cost estimates are divided into 14 categories, of which 4 are fracking related and 10 are drilling related.
The data is separately available for a vertical reference well design, which begins in the first quarter of 2008 and a horizontal
reference well design, which begins in the first quarter of 2010. The vertical reference design does not include a fracking
treatment. The characteristics of the reference wells stay constant over time, so the changes in estimated costs are due to
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Figure 4: Fracking Cost Index
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The cost index is computed from the BLS Producer Purchasing Index (PPI) for the Oil & Gas Extraction industry from the
first quarter of 2005 to the fourth quarter of 2007. Then, from the first quarter of 2008 to the fourth quarter of 2009, it is
calculated from the Spears & Associates data for vertical wells in North Dakota. Finally, from the first quarter of 2010 to
the fourth quarter of 2011 it is calculated from the Spears & Associates data for horizontal wells in North Dakota.

quarter of 2010, the index grows at the rate of the Spears & Associates cost index for horizontal

wells drilled in North Dakota. I fix the cost index to 1 in the first quarter of 2005 and define

“normalized costs” as reported costs divided by the cost index. Figure 4 plots the cost index over

time.

To estimate the individual components of costs, I regress normalized costs for these 90 wells

onto a constant, lateral length, total sand use, total water use and year-quarter fixed effects. The

adjusted R-squared of this regression is 0.54, and the coefficients on lateral length, sand and water

are all significantly different from zero at the 5% level. I define the fixed drilling and fracking cost

as the sum of the constant and the year-quarter fixed effects, the variable drilling and fracking cost

as the coefficient on lateral length, and the sand and water costs as the coefficients on sand and

water use. Finally, I generate time-specific costs by multiplying these estimates by the cost index.

changes in prices, not quantities.
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Figure 5: Fixed and Variable Costs of Drilling and Fracking
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Variable Costs of Drilling and Fracking

The variable costs of using sand and water in fracking are estimated from a regression of the normalized total drilling and
fracking costs for 90 wells with cost data in the public domain onto a constant, lateral length, total sand use, total water use
and year-quarter fixed effects. The estimated fixed cost of drilling and fracking is equal to the constant plus the year-quarter
fixed effect, divided by the cost index. The estimated variable cost of drilling and fracking is equal to the coefficient on
lateral length, divided by the cost index.

Figures 5 and 6 plot these costs over time.

2.5.1 Information Sets

At time t, firm f can learn about fracking from three sets of wells. First, f can observe all wells

that the regulator has made public by time t. This public knowledge includes wells that f operated

and wells that other firms operated. Second, f can observe its own wells which are not yet public

knowledge, due to well confidentiality. Third, f can observe other firms’ wells in which it is a

non-operating participant. I can compute the first two sets of information from well completion

reports alone. To compute the third set, I must identify the mineral rights owners in each well’s

spacing unit.

I collect mineral rights lease data from DrillingInfo.com, which digitally records the universe

of mineral rights transactions filed in county registries of deeds. These leases are often between a
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Figure 6: Variable Costs of Using Sand and Water in Fracking
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Variable Cost of Water Use

The variable costs of using sand and water in fracking are estimated from a regression of the normalized total drilling and
fracking costs for 90 wells with cost data in the public domain onto a constant, lateral length, total sand use, total water use
and year-quarter fixed effects. The estimated cost of pumping 1 pound of sand is equal to the coefficient on sand use, divided
by the cost index, while the estimated cost of pumping 1 gallon of water is equal to the coefficient on water use, divided by
the cost index.
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Table 5: Wells Completed by the 8 Most Active Firms, by Location, Time and Well Characteristics

Firm
North Dakota Outside North Dakota

2005-2011 1995-2004 2005-2011
Bakken Shale Vertical Horizontal Vertical Horizontal

Brigham 113 161 0 93 0
Burlington 105 3,826 26 2,792 532
Continental Resources 313 597 3 657 167
EOG 354 4,659 91 6,566 2,914
Hess 165 639 2 219 15
Marathon 223 2,221 4 813 87
Whiting 247 131 0 1,150 11
XTO 101 2,349 53 7,749 2,801
Rest of industry 1,078

surface owner and an intermediary lease broker operating on behalf of an oil company. Once the

broker acquires a lease, it assigns this lease back to its client, a transaction which is not recorded

by DrillingInfo.com. To capture the information in the lease assignment process, I also scrape the

website of the North Dakota Registry Information Network (www.ndrin.com), which electronically

records lease assignments. I combine this lease and lease assignment data into a single dataset

identifying the names of any firm that has mineral rights in a spacing unit. I assume that all

firms with mineral rights in a well’s spacing unit that are not the well’s operator are non-operating

participants.27

2.5.2 Outside Experience

Throughout the paper, I assume that the only knowledge firms have about fracking comes from

the wells fracked in North Dakota during 2005-2011. To assess the validity of this assumption, I

collect firm-specific drilling history from IHS International for the 8 most active firms in my data,

which I report in Table 5. In the first column, I list the number of wells each firm completed in

the Bakken during 2005-2011. These 8 firms frack 60% of the wells in the dataset. During the

time period I study, these firms are all publicly held, either as independent firms (Brigham, Con-

tinental Resources, EOG, Hess, Marathon and Whiting) or as subsidiaries of larger oil companies

(Burlington is owned by Conoco Phillips, XTO is owned by Exxon Mobil).

On the right hand side of Table 5, I list the US operating history of these firms outside of

27That is, I assume that no mineral rights owners are non-participants. Since only 90 out of 2,699 wells in this time period
had risk penalty challenges, this is a reasonable assumption.
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North Dakota. In the 10 years prior to the period I study, these firms collectively completed tens

of thousands of vertical wells, which are typically drilled into conventional formations, without

frack jobs. However, they only completed 179 horizontal wells, suggesting that they had very

little experience with the technology necessary to develop wells in the Bakken Shale. Only three

firms had previously completed more than ten horizontal wells, and two had done none. During

2005-2011, all eight firms are active outside North Dakota, with four firms completing more than a

thousand wells each. Except for EOG and XTO, the vast majority of contemporaneous operational

experience outside North Dakota is in vertical wells, though seven of the eight firms do complete

horizontal wells. Thus, there is limited scope for these firms to learn about fracking from experience

outside of the Bakken.

3 The Fracking Production Function

To quantify what knowledge firms learn about fracking, it is necessary to measure the empirical

relationship between oil production, location and fracking input choices. I do this by estimating a

production function for fracking. This production function accounts for variation in oil production

across a well’s life and variation between wells in average production levels.

A well’s production changes over time due to age and maintenance-driven downtime. I measure

the impact of these factors on oil production using a simple model common in the petroleum

engineering literature. Because a well’s age is outside the firm’s control and because maintenance

needs are both similar across wells and scheduled in advance, I argue that the time-varying error

in production is plausibly exogenous.

Wells have different average production levels due to differences in their horizontal lengths,

locations and fracking inputs. Location and fracking inputs may nonlinearly affect production,

so I measure their impact non-parametrically, using Gaussian process regression (GPR), which

I describe in detail below. The well-specific error in average production includes the effects of

unobserved inputs, such as chemicals, the unobserved amount of oil that can be recovered and its

sensitivity to fracking. I argue that chemical choices are independent of sand and water choices for

engineering reasons, and that the information which only firms observe about the well’s specific

geological properties while drilling is unlikely to be correlated with production outcomes.

In the next two sections, I explain this production function model in further detail.
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3.1 The Time Series of Oil Production

Per unit of time, wells of all kinds (including non-fracked wells in conventional formations) tend

to produce more oil when they are younger and less oil when they are older. This decline in

performance over time is not surprising, because the amount of oil that can be recovered is finite

and as more of it is pumped out of the ground, the rest becomes more difficult to recover. For

nearly 70 years, petroleum engineers have used the simple ”Arps” model to illustrate this basic

phenomenon (see Fetkovich 1980). The Arps model states that oil production in the t-th month

of well i’s life is:

Yit = Qit
β exp(νit)

where Qi is the baseline level of production, β < 0 is a constant governing the production decline

of the well and νit is a mean-zero production shock. In log terms, this is

log Yit = logQi + β log t+ νit

meaning that a 1% increase in a well’s age should decrease per period production by −β%, on

average.

The operator of a well chooses Dit, the number of days during month t that well i is producing.

Unless the well needs maintenance, there is no reason the operator would choose to produce for

fewer than the full number of days during a month. All wells experience two routine maintenance

events: the installation of external pumping hardware, and the connection of the well to a gas

pipeline network. During maintenance, the operator must shut the well down, reducing Dit. My

data does not indicate whether maintenance occurs in a month, but it does report the number of

producing days Dit, which I incorporate in the model:

log Yit = logQi + β log t+ δ logDit + νit

The time-varying shock to log production, νit, is the result of unobserved geological variation

and deviations from the Arps model. Firms cannot control t, the age of a well, and it is unlikely

that firms observe anything correlated with ν before choosing to do maintenance. Even if they

did, firms would rather have the well producing on more days than fewer days, independent of ν.
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Moreover, firms cannot predict ν when fracking the well, which happens before production starts.

For these reasons, I assume that ν is exogenous:

E [νit | t,Hi, Dit, Si,Wi, lati, loni] = 0

3.2 The Cross Section of Oil Production

I specify a semi-parametric model for logQ, the log of baseline production:

logQi = α + η logHi + f(Si,Wi, lati, loni) + εi

The parametric part of this model, α + η logHi, is a Cobb-Douglas production function relating

the horizontal length of a well to its baseline production. Though it may seem natural that η

should equal one, there are practical reasons why this may not be true. Fracking applied to the

furthest away points of the horizontal segment of a well may not always perform as well as fracking

applied to the closest points. If this decline in effectiveness is nonlinear, wells with longer horizontal

segments may not proportionally outperform wells with shorter horizontal segments. The Hicks-

neutral productivity α measures the average log baseline production across wells. I discuss the

well-specific productivity shock εi in more detail below.

The function f(Si,Wi, lati, loni) = f(Zi) captures the relationship between baseline production,

location and fracking choices. Table 4 in the data section suggests that this relationship differs

across locations, and current petroleum engineering suggests that it may be nonlinear. For this

reason, I estimate f(Zi) non-parametrically, using Gaussian process regression, or GPR. GPR

makes kernel regression techniques available within a panel data framework. Because there are

few examples of GPR in applied economic settings, I provide a basic overview of its application

here.

3.2.1 Gaussian process regression

A Gaussian process G is a probability distribution over continuous real functions. Gaussian pro-

cesses are defined by two functions: a mean function m(Z) and a positive definite covariance

function k(Z,Z ′). The mean function is the expectation of the value of a function f drawn at ran-

dom from G at the point Z. The covariance function is the covariance between f(Z) and f(Z ′).
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In mathematical terms, the mean and covariance functions satisfy:

m(Z) =

∫
f(Z)dG(f)

k(Z,Z ′) =

∫
(f(Z)−m(Z))(f(Z ′)−m(Z ′))dG(f)

A Gaussian process is “Gaussian” because the joint distribution of the values f(Z1)...f(ZN) is

multivariate normal, with a mean vector µ and covariance matrix Σ given by:

µ = (m(Z1)...m(ZN))>

Σi,j = k(Zi, Zj)

This implies that the distribution of f(Z) is also normal with meanm(Z) and variance k(Z,Z). The

normality property makes it easy to compute the likelihood that a dataset (gi, Zi)
N
i=1 is generated

by the relationship g = f(Z) for a function f drawn from a Gaussian process with mean m(Z)

and covariance k(Z,Z ′). By selecting mean and covariance functions from parametric families, the

parameters that best fit the dataset can be estimated using maximum likelihood.

To estimate the function f(Zi) above, I assume m(Z) = 0 due to the presence of the constant

term, α, in the parametric portion of the production function. I assume that k(Z,Z ′) takes the

form of a multivariate normal kernel:

k(Zi, Zj | γ) = exp(2γ0) exp

(
−1

2

∑
d∈S,W,lat,lon

(Zi,d − Zj,d)2

exp(2γd)

)

The first parameter, γ0, measures the variance of the unknown function f(Z). As points (Zi, Zj)

become arbitrarily close to each other, the covariance function approaches the variance of f , and

its formula collapses to exp(2γ0). The remaining parameters γ = (γS, γW , γlat, γlon) measure how

smooth f is in each dimension.

If the mean function is 0 and the covariance function parameters are γ, then the log likelihood

of the data (gi, Zi)
N
i=1 is:

logL(γ) = −1

2
g>K(γ)−1g − log |K(γ)| − N

2
log (2π)
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where g = (g1...gN)> and K(γ)i,j = k(Zi, Zj | γ). The process of maximizing this likelihood

over γ is called Gaussian process regression, or GPR. Conditional on γ and the data (g,Z), the

distribution of f evaluated at an out-of-sample point Z̃ is normal, with mean and variance given

by:

E
[
f(Z̃) | g,Z, γ

]
= k(Z̃ | γ)>K(γ)−1g

V
[
f(Z̃) | g,Z, γ

]
= k(Z̃ | γ)>K(γ)−1k(Z̃ | γ)

where k(Z̃ | γ) = (k(Z1, Z̃ | γ)...k(ZN , Z̃ | γ))>. Note that the formula for the mean of f(Z̃)

is similar to the formula for the estimated regression function in kernel regression.28 However,

the additional assumptions about the distribution of possible regression functions in GPR make

it possible to select smoothing parameters γ using likelihood techniques, which is not possible in

kernel regression. Moreover, since GPR can be defined in terms of a likelihood function, it can

easily be incorporated into panel data methods, something which is challenging in standard kernel

regression.

Gaussian processes are commonly used in the artificial intelligence and operations research

literatures, though their application in economics is so far limited to econometric theory.29 For a

detailed treatment of Gaussian processes, see Rasmussen and Williams (2005).

3.2.2 The Well-Specific Shock εi

The well-specific shock to log baseline production, εi, contains unobserved inputs to the fracking

process and unobservable variation in geology. Fracking chemicals are the main unobserved input.30

Firms primarily use chemicals to inhibit bacterial growth in the fracking mixture, to provide

lubrication for the pumping units used in fracking and to prevent corrosion and mineral scaling in

the well pipe.31 There is evidence in the petroleum engineering literature that an operator’s choice

of chemicals does not directly affect the efficiency of its sand and water choices, so I assume that

28In kernel regression, the term k(Z̃ | γ)>K(γ)−1 in the estimated regression function is replaced with k(Z̃|γ)>∑
i k(Zi,Z̃|γ)

.

However, the estimates of variance in kernel regression are are not directly comparable to the variance formulas in GPR.
29See Kasy (2013) for a recent example.
30Another unobserved input is the characteristics of the piping and fracking hardware that firms use to implement frack

jobs. This hardware determines the number of fracture initiation points, their distribution across the lateral segment and
the level of pressure inside the wellbore.

31See http://www.fracfocus.org for further details on the chemicals used in fracking.
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sand and water choices are independent of chemical choices.32

The petroleum engineering literature predicts that different parts of the Bakken contain dif-

ferent amounts of oil and respond to fracking inputs differently.33 In particular, wells that are

drilled into parts of the Bakken which are thicker, contain more organic material or are more

thermally mature have more oil to draw from, and as a result, fracking inputs may be more pro-

ductive. Similarly, fracking inputs may generate more extensive fracture networks in wells drilled

into more permeable parts of the Bakken than wells in less permeable parts. However, aside from

the location-specific nature of the production function, I do not have data to control for geological

variation in the Bakken.34 If firms have geological data that may be indicative of how much oil a

well contains or how amenable it is to fracking, they may adjust their fracking inputs in response

and εi will not be independent of these choices. Unfortunately, I do not have instruments for

fracking input choices, so it is important to consider what addition information firms could have

about the wells they are fracking and whether they use it to make fracking decisions.

For the vast majority of wells, firms do not have well-specific information about the thickness,

organic content, thermal maturity or permeability of the rock they drill into. To get this informa-

tion, firms must perform expensive and time-consuming geological tests, the results of which are

publicly documented by the NDIC.35 These tests are only possible if firms elect to drill the vertical

portion of the wellbore all the way through the entire Bakken formation, which they rarely do.36

Firms do have a potentially useful source of information about well quality in the samples of

rock that they collect during drilling, called “cuttings”. As the drill bit passes through the upper

Bakken shale on its way into the middle Bakken, firms can analyze the returned rock, which may

be indicative of the amount of the oil and the level of permeability in the upper Bakken shale at

the location where the horizontal segment starts. However, since the goal in horizontal drilling

is to stay inside the middle Bakken, firms receive no additional information about the upper

Bakken shale and receive no information at all about the lower Bakken shale during the course

32See, for example, Jabbari et al. (2012)
33See Baihly et al. (2012), Jabbari et al. (2012) and Saputelli et al. (2014)
34In the appendix, I analyze the (limited) publicly available data on thickness, organic content and thermal maturity.

Broadly speaking, this data is not well-specific (it is spatially interpolated from a small number of wells) and does not
explain much variation in production after conditioning on location.

35Specifically, firms use gamma ray well logs to determine thickness, rock evaluation pyrolysis of cuttings or well cores to
measure organic content and thermal maturity and drill stem tests or MRI/NMR tests to measure permeability.

36For example, Sitchler et al. (2013), a recent petroleum engineering study of well performance, fracking inputs, and geology
characteristics, has the necessary data for just seven wells.
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of drilling. Moreover, the characteristics of the upper Bakken shale can change over the length

of the horizontal segment, and there is no guarantee that the lower Bakken shale has the same

characteristics at a point as the upper Bakken shale. During the time period I study, laboratory

tools to infer rock properties like permeability from cuttings data had not yet been developed.37

Thus, the information firms can acquire during drilling is unlikely to be helpful in choosing fracking

inputs, and in practice may not be used at all.

For these reasons, I argue that εi is exogenous to firm choices and other well characteristics:

E [εi | t,Hi, Dit, Si,Wi, lati, loni] = 0

Combining everything together, the whole production function model is:

log Yit = α + β log t+ δ logDit + η logHi + f(Zi) + εi + νit

Since Gaussian process regression generates a normal likelihood for f(Zi), I assume that νit and εi

are both normal, with zero mean and variances σ2
ν and σ2

ε , respectively.

3.3 Likelihood

I compute the likelihood function in two steps. In the first step, I treat the unobserved effect of

fracking and location f(Zi) as observed and compute the likelihood of (Yit, Xit) conditional on

f(Zi) and the parameters. In the second step, I integrate out the unobserved values of f(Zi) using

the likelihood function for f(Zi) generated by GPR. I describe the likelihood calculation in detail

in the appendix.

3.4 Production Function Estimates

Table 6 shows maximum likelihood estimates of the semi-parametric production function described

above in addition to a simpler parametric specification. The parametric specification replaces

f(Si,Wi, lati, loni) with township fixed effects, τi, and a Cobb-Douglas production technology in

sand and water, κS logSi + κW logWi.

37See, for example, Ortega et al. (2012), who note that “Cuttings have not been used in the past quantitatively for
optimization of hydraulic fracturing jobs.”
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All of the parametric model coefficients are statistically significantly different from zero in

both specifications and the coefficients common to both have similar estimates. As expected,

wells produce less oil per month as they age, with an estimated log decline rate of −0.56.38 The

coefficient on days producing is 1.75, suggesting that when wells undergo maintenance, production

per day is lower than when wells do not have maintenance issues. Wells with longer horizontal

segments produce more oil than wells with shorter segments, but the effect is not linear. Doubling

the horizontal length of a well increases production by 80% in the Cobb-Douglas specification

and 85% in the Gaussian process. The variance of ε is larger in the Cobb-Douglas specification

than in the Gaussian process, suggesting that the flexibility of the Gaussian process explains more

of the variation in baseline oil production than Cobb-Douglas and location fixed effects do. The

estimated Cobb-Douglas marginal productivities of sand and water are precisely estimated and are

smaller than the preliminary estimates in Table 4. Sand and water both increase oil production,

with decreasing returns to scale.

The estimated GPR smoothing parameters do not have an intuitive interpretation, so I illustrate

the estimated production relationships graphically in Figure 7. The top panel is a contour plot of

the non-parametrically estimated function f(Si,Wi, lati, loni), evaluated at the geographic centroid

of the most active township during this time period. The lines are iso-production curves, which

are combinations of sand and water choices with the same estimated value of f . Across all levels

of water use, greater sand use is associated with higher oil production, while greater water use

is only associated with higher production at the highest level of sand use, and only in a limited

range. The middle panel shows contour lines for the Cobb-Douglas specification. The Gaussian

process and Cobb-Douglas specifications make starkly different predictions about the impact of

fracking inputs and location on oil production. At the average sand and water choices for this

township, 266 lbs and 131 gals per foot, respectively, the Gaussian process predicts -3.5 log points

of baseline production, while Cobb-Douglas predicts -3.1, meaning that the predictions of the two

models differ by 40%. Additionally, the non-parametric specification makes different predictions

in different locations. The bottom panel shows contour lines for the production function evaluated

at the centroid of a nearby township. The location of the most productive sand and water choices

differ across the two townships. In the top panel, the maximal choice is approximately 600 lbs

38Current geophysics research on the Bakken has found similar decline rates. Hough and McClurg (2011), for example,
estimates the decline rate to be −0.5.
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Table 6: Production Function Model Estimates

Cobb-Douglas Gaussian Process
Coefficient Estimate Std. Error Estimate Std. Error

α -4.4152 (0.3278)
β -0.5576 (0.0024) -0.5570 (0.0024)
δ 1.7543 (0.0035) 1.7549 (0.0035)
η 0.7977 (0.0363) 0.8479 (0.0357)
γ0 -0.3945 (0.0572)
γS 6.1757 (0.1343)
γW 5.9467 (0.1232)
γlat -2.4702 (0.0539)
γlon -2.2376 (0.0609)
κS 0.1582 (0.0157)
κW 0.1148 (0.0159)
log σε -0.9086 (0.0147) -1.0591 (0.0187)
log σν -0.4898 (0.0024) -0.4897 (0.0024)

Township Fixed-effects X

Overall R2 0.783 .811
Between R2 0.813 .882
Within R2 0.764 .764

# Wells 2,699
# Well-months 91,783

Maximum likelihood estimates of the Cobb-Douglas production function model:

log Yit = β log t+ δ logDit + η logHi + κS logSi + κW logWi + τi + εi + νit

and the Gaussian process production function model:

log Yit = α+ β log t+ δ logDit + η logHi + f(Zi | γ) + εi + νit

Yit is oil production for well i when it is t months old, Dit is the number of
days producing, Hi is the horizontal length, and Zi is the vector of sand use
Si, water use Wi, latitude lati and longitude loni. τi is a set of township fixed
effects. “Between”R2 is theR2 for the average predicted log baseline production.
“Within” R2 is the R2 for the predicted time series of production.
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sand and 200 gals water, per foot, while in the bottom panel it is 400 lbs sand and 500 gals water,

per foot. This variation across townships in the relationship between oil production and inputs

is not possible with the Cobb-Douglas specification, so for the rest of the paper, I focus on the

Gaussian process specification.

The fit of both models is high, with R2’s of 78% for the Cobb-Douglas model and 81% for

the Gaussian process model. The “between” R2’s, which measure the correlation of predicted

baseline production and actual baseline production, are higher, at 81% and 88%, respectively.

The production function models fit the data well for several reasons. Both the inputs to fracking,

sand and water, and the single output of fracking, crude oil production, are precisely measured.

The main unobserved input, fracking chemicals, does not directly affect production or observed

input choices, and Gaussian process regression flexibly controls for spatial heterogeneity. Moreover,

the production function for fracking is an approximation to a true physical relationship between

sand, water, location and oil production. However, since I estimate this approximation non-

parametrically, there is the possibility that the estimated smoothing parameters are too narrow,

leading to over-fitting.

To check for this, I perform a cross-validation test of the model estimates. For each of 25 test

runs, I randomly split the wells into two separate datasets: a training dataset containing 90% of

the wells, and a validation dataset containing the remaining 10%. I re-estimate the production

function on the training dataset and use the estimates to predict production in the validation

dataset. I save the estimated production function coefficients, the R2 values generated by the

training data and the R2 values generated by the validation data, and report their distribution

across test runs in Table 7. The parametric components of the production function model are quite

stable across runs, with the average model estimates being similar to the full dataset maximum

likelihood estimates. The standard deviations across runs are smaller than the maximum likelihood

standard errors for the full dataset. Though the R2 values for validation samples are lower than

for training samples, they are still quite high, with the average overall R2 for validation samples

at approximately 78%, compared to 81% in the training samples. To complement these checks, I

provide a series of robustness checks of the stability of the production function across well cohorts

in the appendix.

The consistency of the coefficient estimates across cross-validation tests and the high goodness-
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Figure 7: Contour Plots of Production Function Estimates
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Table 7: Production Function Model Cross-Validation Statistics

Coefficient Average Estimate Std. Dev. of Estimate

α -4.3388 0.1295
β -0.5570 0.0016
δ 1.7533 0.0055
η 0.8404 0.0136
γ0 -0.4046 0.0290
γS 6.1659 0.0532
γW 5.9278 0.0616
γlat -2.4454 0.0236
γlon -2.2211 0.0392
log σε -1.0545 0.0109
log σν -0.4916 0.0063

R2 comparisons

R2 type Avg. in training Avg. in validation

Overall R2 0.8116 0.7835
Between R2 0.8826 0.8098
Within R2 0.7652 0.7594

# Wells 2,699
# Well-months 91,783
# Cross validation samples 25

Maximum likelihood estimates of the production function model:

log Yit = α+ β log t+ δ logDit + η logHi + f(Zi | γ) + εi + νit

Yit is oil production for well i when it is t months old, Dit is the number of days
producing, Hi is the horizontal length, and Zi is the vector of sand use Si, water use
Wi, latitude lati and longitude loni.
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of-fit measures in validation samples suggest that the maximum likelihood estimates in Table 6

do not suffer from over-fitting and represent a stable and causal relationship between inputs and

production.

4 Evidence for Learning

As firms learn to use fracking technology more efficiently, they should make more profitable fracking

design choices. If oil prices, input costs and the quality and size of drilling locations were constant

over time, I could test this prediction by extrapolating future production from current production

and simply check if average expected discounted profits per well increased over time. However, oil

prices, input costs and locations do vary over time, so I control for this variation by examining

trends in the ratio of actual profits to counterfactual maximal profits. That is, I compute a

profitability measure which compares the profits firms earned with the highest amount of profits

they could have earned with the best fracking design for each well.

I use the fracking production function to compute these profits. The profits to well i fracked

using design j are

Πij = φPiE

[
T∑
t=1

ρtỸijt

]
− ci(Sj,Wj)

where φ is the fraction of oil production the firm keeps for itself, Pi is the price the firm will

receive for its oil production, T is the number of periods the well is expected to produce for, ρ is

the per-period discount rate, Ỹijt is the realization of the level of oil production for well i under

fracking design j at age t, and ci(Sj,Wj) is the total cost of drilling and fracking that design.39 The

main empirical object needed in the calculation of Πij is the expected present value of discounted

39I assume firms believe oil prices follow a martingale process, and thus use a single price, Pi for all future revenues.
Additionally, I assume that the fraction of oil revenue that accrues to the firms is 70%, based on typical royalty rates of
16.5%, state taxes of 11.5% and ongoing operating costs of 2%. I set T = 240 months, though the NDIC expects Bakken
wells to produce for 540 months, making these profit calculations an underestimate. I set ρ = .9, which is the standard
discount rate use in oil & gas accounting. At this rate, the difference between 540 months and 240 months is only 2.6% in
present value terms.
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oil production, E [DOPij]:

E [DOPij] = E

[
T∑
t=1

ρtỸijt

]

=
T∑
t=1

ρtE
[
Ỹijt

]
I compute this expectation conditional on two different information sets: the full data that I have,

and the data each firm had when it made a fracking design decision. The first case represents

an ex post expectation, and provides a way of asking whether firms made better fracking design

decisions over time, given today’s knowledge. The second case represents an ex ante expectation,

and provides a way of asking whether firms’ choices were consistent with static profit maximization,

given my measures of their information sets.

In both cases, I combine the production function parameter estimates in Table 6 with the

normality assumptions on the unobserved terms to compute a probability distribution over oil

production. Since the production function estimates depend on the full dataset, this means that I

am computing ex ante expectations under the assumption that firms had the same beliefs about the

production function parameters as I do now. This is a strong assumption. The ex ante calculation

of expected oil production will be biased if firms had different beliefs than I do about the decline

rate β, the productivity of producing days δ and horizontal length η, the bandwidth parameters

γ and the variances σ of the unobservable production shocks. I assume that these biases are

small, as decline rates and productivity parameters can be predicted using geophysical models40,

and bandwidth and variance parameters do not affect the asymptotic properties the production

function estimate.41 Moreover, the impact of fracking design and location f(Z) is computed

nonparametrically from both the bandwidth parameters γ and the information set. Thus firms

with different information sets will have different beliefs about f(Z), and these beliefs will differ

from the ex post beliefs as well.

I present the full calculation of expected discounted oil production in the appendix.
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Figure 8: Fraction of Positive Profits Captured and Maximal Profits by Year, ex post
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4.1 ex post Comparisons

Over time, firms choose fracking designs with higher ex post expected profits. The top half of Figure

8 plots the ex post ratio of actual profits to maximal profits per well.42 The average fraction of

profits captured increases nearly monotonically over time, from 15.7% in 2005 to 67.6% in 2011.

Much of this growth happens in two phases. Between 2005 and 2007, the fraction increases from

15.7% to 43.9%, and between 2009 and 2010, the fraction increases from 44.8% to 65.5%. By

2011, firms earn an average of 67.6% of the maximum profits they could have earned with optimal

fracking input choices.

The bottom half of Figure 8 shows how these maximal profits evolve over time. When oil prices

were at their peak in 2008, the profit maximizing input choice for the average well would have

generated $36.1 million in profits, meaning that in 2008, foregone profits from inefficient fracking

choices averaged $21.3 million per well. By 2011, lower oil prices reduced these maximal profits

40See Fetkovich (1980).
41See section 7.1 in Rasmussen and Williams (2005).
42I only include wells in this calculation that have both positive actual profits and positive maximal profits. Over the

entire sample, 5.2% of wells have either negative actual profits or negative maximal profits.
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Figure 9: Average Profit Maximizing Sand Use and Actual Sand Use Per Well, ex post
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to $25.6 million per well. Combined with the higher fraction of profits captured, firms in 2011 left

only $9.9 million on the table.

Firms captured more profits by selecting more profitable fracking designs over time. In Figures 9

and 10, I plot average profit maximizing and actual input use per well over time. Though firms use

less sand in fracking than the estimated profit maximizing levels, starting in 2009, actual choices

approach optimal choices. In 2005 and 2006, the average well was fracked with approximately

275 lbs sand per foot less than the profit maximizing level. This difference in sand use doesn’t

meaningfull fall until reaching 132 lbs per foot in 2010. By 2011, the difference between optimal

sand use and actual sand use is only 120 lbs per foot.

Though the differences in actual and optimal water use start out considerably larger than the

differences in sand use, actual water choices get closer to optimal water choices in almost every

year. In 2005, firms fracked the average well with 300 gals per foot less water than the water

use in the optimal well. By 2011, the difference is only 98 gals per foot. These trends in actual

input use towards optimal input use are consistent with the idea that firms are learning about

the efficient use of fracking inputs as they observe more data, and with this knowledge they make
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Figure 10: Average Profit Maximizing Water Use and Actual Water Use Per Well, ex post
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more profitable choices.

4.2 Profitability vs. Productivity

The existing literature on learning in firms focuses on productivity instead of profitability. Scholars

in this literature measure learning by comparing estimates of the time-varying component of Hicks-

neutral productivity with the amount of experience a firm has in producing.43 This approach to

studying learning does not treat the production function as an object for firms to learn. Rather,

the knowledge from accumulated experience serves as an input to the firm’s production function,

in the same way that labor, capital and materials do.

To determine if firms in this dataset became more productive, in addition to more profitable,

I add year fixed effects to the Gaussian process production function specification, and plot their

estimated values and confidence intervals in Figure 11.

Wells fracked in 2005 are actually 13.7% more productive than wells fracked in 2006. However,

43For example, Benkard (2000) correlates log labor requirements per unit of production with measures of experience (and
forgetting), and Thornton and Thompson (2001) estimate a semi-parametric production function model in which various
measures of experience are direct inputs to production.
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Figure 11: Gaussian Process Year Effects
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the confidence interval around this estimate is wide enough to include zero, as there are only 10

wells in 2005 and 20 wells in 2006. Wells fracked in later years are more productive than wells

fracked in 2005 or 2006. For example, wells fracked in 2009 are 35.6% more productive than

those in 2005, and 49.3% more productive than those in 2006. Again, the confidence intervals

around these estimates are wide, and I cannot reject the hypothesis that there is no change in

productivity between 2006 and 2009. In each of the next 2 years, productivity falls slightly,

though the differences are not statistically significant. Overall, wells fracked between 2008-2011

cohorts are more productive than the earliest wells, but there is no productivity growth during

2008-2011. Since this time period covers 95% of the wells studied in this paper, I interpret this as

evidence that firms learned to be more productive only in the earliest years. In contrast, the results

in the previous section show that firms learned to be more profitable in all years, and especially

during 2008-2011.
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Figure 12: Fraction of Positive Profits Captured and Maximal Profits by Year, ex ante
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4.3 ex ante Comparisons

Though firms make choices which approach the ex post estimates of optimal choices over time,

those choices do not always maximize the ex ante estimates of expected profits. The top half of

Figure 12 plots the ratio of actual profits to maximal profits per well using ex ante expectations.44

Firms initially make fracking input choices with expected profits that are close to the optimal

choices, capturing 76.0% of potential ex ante profits in 2007. However, profit capture actually falls

over time, reaching 67.8% in 2011, approximately the same level as the ex post case in 2011.

While the fraction of profits captured falls, ex ante expectations of maximal profits rise from

2009-2011, as show in the bottom half of Figure 8. Unlike the ex post case, where the highest level

of maximal profits coincides with the 2008 peak in oil prices, ex ante maximal profits are highest

in 2011, reaching $28.8 million per well. Though average oil prices are similar in 2008 ($100 per

44As in the ex post case, I only include wells in this calculation that have both positive actual profits and positive maximal
profits. Over the entire sample, 6.1% of wells have either negative actual profits or negative maximal profits. Half of these
wells are fracked in 2009. Moreover, I further limit the set of wells by computing expected profits for the subset of wells that
are fracked by firms which can observe 50 wells and 300 well-months of production history. The first wells that satisfy this
criteria are not fracked until 2007.
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Figure 13: Average Profit Maximizing Sand Use and Actual Sand Use Per Well, ex ante
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bbl) and 2011 ($95 per bbl), firms have much more information about fracking in 2011 and this

information generates more optimistic expectations. The combined effect of falling ex ante profit

capture and rising maximal profits increases foregone ex ante profits from $3.1 million in 2007 to

$10.6 million in 2011.

Firms capture a shrinking fraction of ex ante profits over time because their actual sand use

grows more slowly than the expected profit maximizing sand use does. Figure 13 plots average

profit maximizing and actual sand use per well over time. In 2007, actual sand use is quite similar

to ex ante optimal sand use. However, as the data firms have to learn from accumulates, optimal

sand use increases faster than actual sand use, and by 2011, the difference between optimal and

actual sand use reaches 131 lbs per foot. Though this difference is similar to the difference in the

ex post case during 2011, it is striking that the differences in actual and optimal sand use increase

over time in the ex ante case while decreasing in the ex post case.

Figure 14 plots average ex ante optimal and actual water use per well is similar to the ex post

case in Figure 10: on average, firms use less than the ex ante optimal amount of water in fracking,

but make improved water choices over time. In 2007, firms use 385 gals per foot less water than
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Figure 14: Average Profit Maximizing Water Use and Actual Water Use Per Well, ex ante
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the optimal level. This difference shrinks in each year, and by 2011, it is only 107 gals per foot.

5 Fracking input choice model

Though firms do learn over time, many of their choices do not coincide with the predicted optimal

choices, even on an ex ante basis. I consider two possible explanations for this phenomenon based

firm preferences. First, firms may care about the uncertainty in their estimates of the profits of a

fracking design. Second, in estimating the profits of a fracking design, firms may weigh their own

data differently than the data generated by their competitors.

5.1 Preferences Over Uncertainty

In comparing the expected profits a firm earned to the maximal expected profits a firm could

have earned, I have implicitly assumed that the correct strategy is for firms to select fracking

designs solely on the basis of expected profits, without regard to the uncertainty of profits across

designs. There are two potential problems with this assumption. First, viewing fracking design
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as an investment project selection problem, there may be financial or organizational factors that

cause firms to have preference over uncertainty. Second, when learning about the performance

of different fracking designs, firms may care about uncertainty through the explore vs. exploit

tradeoff that exists in all learning problems.

Though it is appropriate for firms to ignore uncertainty in simple and frictionless models of

investment project selection, there are practical reasons why uncertainty may also matter. Firms

raise outside capital to finance operations and the presence of debt capital can lead firms to select

fracking designs with higher uncertainty, as bond holders will bear the downside risk. On the other

hand, capital constrained firms may not necessarily have the option of selecting fracking designs

with higher uncertainty if they are more expensive to implement. Financial considerations can thus

push firms towards or away from fracking designs with more uncertain profits. Firms must also

hire and incentivize potentially risk averse engineers, who select fracking designs. Depending on

the extent of their career concerns and the structure of their compensation, engineers themselves

may have preferences over uncertainty.

The prescribed learning strategies in most theoretical models of learning involve uncertainty

seeking behavior. Analyses of the explore vs. exploit tradeoff in learning predict that agents

should always do some amount of exploration, by selecting actions with more uncertain payoffs.

This tradeoff will frequently require agents to sacrifice expected payoffs in the present in order to

acquire uncertainty resolution in the future. Since actions with the more uncertain payoffs can

resolve more future uncertainty, experimenting agents should have a positive taste for uncertainty.

Most theory models predict that agents will experiment, at least initially. In most of the settings

studied by Aghion et al. (1991), a fully rational, expected present discounted value maximizing

agent will do some amount of exploring forever and a similar result obtains in the multi-agent

context studied by Bolton and Harris (1999). The implied preferences for uncertainty in both of

these models arise out of the natural dynamics of learning problems. Agents are still risk neutral

over their payoffs, but because there is present value to better information in the future, they

prefer those actions with uncertain payoffs which can produce more future information.

Empirically, oil companies exhibit both risk seeking and risk averse behavior. The process

of acquiring mineral rights for new drilling prospects and establishing the existence of oil within

those prospects is an especially risky one (see, for example Walls and Dyer 1996 and Reiss 1989).
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However, oil companies are price takers in the world market for oil, and many use financial markets

to hedge some or all of their future oil production, suggesting that firms may wish to avoid risks

associated with future price fluctuations (see Haushalter 2000).

Whether the companies I study here prefer fracking input choices with more or less uncertain

production is an empirical question. I estimate firm preferences over expectations and variance

of fracking designs by analyzing realized choices. To do this, I fit a multinomial logit preference

model of fracking design choice in which the “utility” a firm has for fracking design j applied to

well i is:

uij = ξm (φPiE [DOPij]− ci(Sj,Wj)) + ξsφPi (V [DOPij])
1
2 + εij

= ũij(ξm, ξs) + εij

where φ is the fraction of oil revenues firms keep, Pi is the price of oil for well i, ci(Sj,Wj) is the

cost of fracking design j for well i, and εij is an iid logit error. The parameters (ξm, ξs) represent the

firm’s preference over expected present discounted revenues and the standard deviation of present

discounted revenues, conditional on the data they have. Under this preference specification, the

probability that a firm selects design j for well i is given by the standard logit formula:

pij =
exp(ũij)∑
k exp(ũik)

The mean utilities in this preference model are linear in the expectation and standard deviation

of profits to a fracking design. Preferences of this type have precedence in the theoretical learning

literature. Brezzi and Lai (2002) show that a linear combination of the expectation and standard

deviation of the payoff to a choice can represent a simple and efficient approximation to the Gittins

index value for the choice, if the choices have independently distributed payoffs. Since Gittins and

Jones (1979) show that ordinal preferences over Gittins indices result in dynamically efficient

learning behavior, agents that utilize these linear approximations attain near-optimal learning.

Though the profits to fracking input choices are not distributed independently, authors in the

computer science and operations research literatures have found that these learning strategies also

perform well in the general case. In those literatures, learning strategies which select the choice with

the highest value of a linear combination of the expectation and standard deviation of payoffs are
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called “upper confidence bound”, or UCB strategies. Rusmevichientong and Tsitsiklis (2010) and

Srinivas et al. (2012) have established that UCB strategies quickly identify the highest performing

choice, and do so in a way which minimizes an agent’s ex post cumulative regret over its past

choices. UCB strategies are also reported to be in use at major technology companies, like Yahoo,

Microsoft and Google (see Chapelle and Li 2011, Graepel et al. 2010 and Scott 2010). In all of the

existing literature which utilizes UCB learning strategies, the weight on the standard deviation

of the payoffs to a choice is positive, hence the “upper” in upper confidence bound strategies.

This paper is not the first in economics to utilize UCB learning strategies in an empirical context.

Dickstein (2013) estimates the parameters of a UCB learning strategy in a study of learning

behavior by physicians.

With data on the choices firms made, expectation and standard deviation calculations made

using their information sets, and oil price and fracking cost data, I estimate the parameters (ξm, ξs)

using maximum likelihood. I estimate separate values of (ξm, ξs) for each of the 8 most active

firms, and also estimate a pooled value of (ξm, ξs) for the industry as a whole. Table 8 reports

these coefficient estimates, standard errors, and several measures of goodness-of-fit. All firms and

the pooled industry have positive “taste” for the expectation of profits of a fracking design and

negative “taste” for the standard deviation. That is, every firm appears to avoid fracking input

choices with high uncertainty. I can reject risk-neutrality for all firms and for the pooled industry.

In dollar terms, firms make choices as if they are willing to accept a reduction in expected profits

of $0.60 to $0.98 for a reduction of $1 in the standard deviation of profits.

I report three goodness-of-fit statistics. The likelihood based pseudo-R2, which I refer to as

LLPR, is defined as 1 minus the ratio of the optimized log-likelihood over the log-likelihood

evaluated at the null hypothesis:

LLPR = 1− logL(ξ̂m, ξ̂s)

logL(0, 0)

This statistic is similar to a real R2 in that it varies between 0 and 1, with 0 indicating that the

model does not fit any better than no model and 1 indicating that the model fits the data perfectly

(see Train 2009). This measure of fit indicates how far from “perfect” the fit actually is, but it

does not have a “fraction of variance explained” interpretation the way a true R2 does. I also

compute the correlation between the expected input use implied by the model’s estimated choice
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Table 8: Uncertainty Preference Model Estimates

Firm ξ̂m se(ξ̂m) ξ̂s se(ξ̂s) # Wells LLPR ρS ρW

Brigham 11.05 1.05 -11.30 1.16 111 0.24 0.00 0.15
Burlington 12.02 1.25 -15.39 1.57 102 0.34 0.55 0.47
Continental 13.54 0.83 -17.26 1.05 313 0.33 0.53 0.50
EOG 5.88 0.39 -7.75 0.57 339 0.17 -0.18 0.33
Hess 10.69 0.96 -13.10 1.10 143 0.30 0.60 0.45
Marathon 15.52 1.24 -21.99 1.67 209 0.44 0.61 0.30
Whiting 10.25 0.74 -16.97 1.21 247 0.36 -0.02 0.05
XTO 11.56 1.22 -14.36 1.45 101 0.32 0.50 0.51
All 7.46 0.17 -10.39 0.23 2,605 0.23 0.50 0.40

Maximum likelihood estimates of the uncertainty preference model:

uij = ξm (φPiE [DOPij ]− ci(Sj ,Wj)) + ξsφPi (V [DOPij ])
1
2 + εij

Pi is the price of oil for well i, E [DOPij ] is the expectation of the present discounted
value of oil production for well i when it is fracked using design j, V [DOPij ] is the vari-
ance of the present discounted value of oil production for i under design j, ci(Sj ,Wj)
is the cost of implementing design j on well i, and εij is an iid logit shock. LLPR is
a likelihood-based pseudo-R2:

LLPR = 1− logL(ξ̂m, ξ̂s)

logL(0, 0)

where L(ξ̂m, ξ̂s) is the likelihood of the model evalauted at the MLE and L(0, 0) is the
likelihood of the model evaluated at the null hypothesis. ρS and ρW are the correlations
of actual sand and water use decisions with their predicted values from the model.
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probabilities and actual input use, for both sand and water. If expected input use is similar to

what is observed in the data, these correlations should be positive and (ideally) close to 1.

The fit of this model varies a fair amount across firms, but is generally modest. The pseudo-R2

measures are less than 50% for all firms and for the pooled industry, suggesting that the best fitting

values of the model’s parameters still require a lot of support from the logit errors to rationalize

firm behavior. For 6 of the 8 firms, the correlation between predicted sand use and realized sand

use is positive, and for 5 it is at least 50%. The correlations between predicted and realized water

use are smaller, with only 2 firms having correlations at or above 50%, but no firms have negative

correlations. Though the coefficient estimates are all significantly different from zero, the low fit

statistics suggest that preferences that are linear in the mean and standard deviation of profits

only explain a small portion of observed behavior.

I also estimate a version of this model which includes an interaction term between expected

profits and the standard deviation of profits. While learning rules which are nonlinear in the mean

and standard deviation do not appear in the existing learning literature, it is possible that true

firm preferences over risk and reward are more complicated than a linear model can capture. By

including an interaction between expected profits and the standard deviation of profits, I allow for

risk preferences that may vary with the mean. Table 9 reports estimates of these models. The

results are qualitatively the same as Table 8, with all firms showing risk aversion and all but one

firm showing increasingly negative taste for risk as reward increases. Goodness-of-fit measures are

slightly better for these models than for the standard mean/variance models, though this is to be

expected from the inclusion of an additional covariate.

Overall, Tables 8 and 9 provide evidence that firms tend to select fracking designs with higher

expected profits and avoid fracking designs with higher standard deviation of profit. This behavior

is not consistent with the notion that firms are actively exploring uncertain fracking designs, but

it is consistent with passively learning firms that are constrained by organizational or financially

motivated variance aversion.

5.2 Own-data bias

A different explanation for firms’ apparent unwillingness to select the fracking design with the

largest expected profits is that I am computing expectations with respect to different beliefs than

47



Table 9: Uncertainty Preference Model Estimates, With Interaction

Firm ξ̂m se(ξ̂m) ξ̂s se(ξ̂s) ξ̂I se(ξ̂I) # Wells LLPR ρS ρW

Brigham 20.12 1.95 -8.37 1.27 -2.86 0.44 111 0.31 -0.03 0.16
Burlington 14.08 1.66 -14.81 1.58 -0.70 0.36 102 0.35 0.57 0.51
Continental 21.26 1.29 -17.25 1.12 -2.25 0.27 313 0.37 0.60 0.53
EOG 6.10 0.41 -7.49 0.58 -0.07 0.03 339 0.17 -0.17 0.35
Hess 9.80 1.16 -13.37 1.12 0.38 0.29 143 0.30 0.60 0.45
Marathon 20.55 1.72 -22.36 1.75 -1.44 0.33 209 0.45 0.67 0.25
Whiting 11.58 0.86 -17.03 1.24 -0.24 0.07 247 0.37 0.03 0.05
XTO 13.87 1.70 -14.59 1.48 -0.50 0.24 101 0.32 0.48 0.53
All 9.06 0.21 -10.59 0.23 -0.29 0.02 2,605 0.24 0.53 0.44

Maximum likelihood estimates of the uncertainty preference model:

uij = ξm (φPiE [DOPij ]− ci(Sj ,Wj)) + ξsφPi (V [DOPij ])
1
2

+ ξI (φPiE [DOPij ]− ci(Sj ,Wj))
(
φPi (V [DOPij ])

1
2

)
+ εij

Pi is the price of oil for well i, E [DOPij ] is the expectation of the present discounted value of oil
production for well i when it is fracked using design j, V [DOPij ] is the variance of the present
discounted value of oil production for i under design j, ci(Sj ,Wj) is the cost of implementing
design j on well i, and εij is an iid logit shock. LLPR is a likelihood-based pseudo-R2:

LLPR = 1− logL(ξ̂m, ξ̂s, ξ̂I)

logL(0, 0, 0)

where L(ξ̂m, ξ̂s, ξ̂I) is the likelihood of the model evalauted at the MLE and L(0, 0, 0) is the
likelihood of the model evaluated at the null hypothesis. ρS and ρW are the correlations of
actual sand and water use decisions with the predicted values from the model.
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those held by firms. There are many ways that a firm’s beliefs may be different than the ones

I calculate: firms may have biased prior beliefs about the role of fracking design and location,

they may have simpler beliefs about the functional form relating fracking design and location to

production, or my fracking cost and oil price data could be different from the costs and prices firms

experience. However, using the data that I have, I am only able to test a simpler explanation. I

assume that firms do have the belief structure I have described here, but do not necessarily treat

all of the data available to them equally. In particular, firms may weigh data from their own

experiences differently than data from the experiences of other firms that they observe through

the public disclosure process. I refer to this explanation as “own-data bias”.

To test for this phenomenon, I introduce a new parameter, λ ∈ (0, 1), which represents the

firm’s relative weighting scheme. If λ = 0, the firm places no weight on the data generated by

other firms and if λ = 1, the firm places no weight on its own data, relying entirely on outside

data to learn. At λ = 1
2
, the firm puts equal weight on its own data and the data generated by

others, which gives the preference model described in the previous section. For each value of λ, I

can compute the expectation and standard deviation of weighted discounted profits for well i with

fracking design j, for which I provide a calculation in the appendix. I then use these weighted

profits in the same multinomial logit choice model described in the previous section, and refer to

the choice model with weighted estimates as the weighted preference model.

In Table 10, I report maximum likelihood estimates of λ, as well as the other preference model

coefficients, for the same specification in Table 8. The estimated value of λ is less than 1
2

for

all individual firms, and for 5 firms, the 95% confidence intervals do not include 1
2
. The pooled

estimate is also less than 1
2

and its 95% confidence interval does not include 1
2
. Comparing Tables

8 and 10, the preference model coefficients do change slightly, but allowing for weighted beliefs

does not affect the previous conclusion that all firms dislike uncertainty in the profits of a fracking

input choice. Firms are willing to trade $0.61 to $0.83 in expected profits for a reduction of $1 in

the standard deviation of profits, which is a similar range to the model estimated in Table 8. The

fit of the model in Table 10 is somewhat better than the model in Table 8, but it is still modest.
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Table 10: Weighted Uncertainty Preference Model Estimates

Firm ξ̂m se(ξ̂m) ξ̂s se(ξ̂s) λ̂ se(λ̂) # Wells LLPR ρS ρW

Brigham 14.37 1.33 -17.27 1.71 0.12 0.04 111 0.30 0.04 0.16
Burlington 13.95 1.46 -17.98 1.84 0.41 0.05 102 0.36 0.55 0.50
Continental 18.26 1.10 -22.38 1.36 0.36 0.02 313 0.37 0.63 0.55
EOG 7.01 0.45 -10.65 0.75 0.15 0.04 313 0.20 -0.12 0.36
Hess 10.87 1.00 -14.13 1.19 0.46 0.05 143 0.31 0.62 0.46
Marathon 21.77 1.72 -27.79 2.12 0.34 0.03 209 0.47 0.68 0.24
Whiting 9.82 0.70 -16.00 1.14 0.00 247 0.36 0.04 0.06
XTO 12.98 1.52 -15.84 1.63 0.44 0.04 101 0.32 0.48 0.53
All 8.22 0.19 -11.74 0.26 0.38 0.01 2,605 0.24 0.54 0.45

Maximum likelihood estimates of the uncertainty preference model:

uij = ξm (φPiE [DOPij | λ]− ci(Sj ,Wj)) + ξsφPi (V [DOPij | λ])
1
2 + εij

Pi is the price of oil for well i, E [DOPij | λ] is the expectation of the present discounted value
of oil production for well i when it is fracked using design j, V [DOPij | λ] is the variance
of the present discounted value of oil production for i under design j, λ is the weighting
parameter, ci(Sj ,Wj) is the cost of implementing design j on well i, and εij is an iid logit
shock. LLPR is a likelihood-based pseudo-R2:

LLPR = 1− logL(ξ̂m, ξ̂s, λ̂)

logL(0, 0, 12)

where L(ξ̂m, ξ̂s, λ̂) is the likelihood of the model evalauted at the MLE and L(0, 0, 12) is the
likelihood of the model evaluated at the null hypothesis. ρS and ρW are the correlations
of actual sand and water use decisions with the predicted values from the model. Because
Whiting’s estimate of λ is at the boundary, standard errors are computed with respect to ξm
and ξs only.
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6 Conclusion

This paper provides one of the first empirical analyses of learning behavior in firms using opera-

tional choices, realized profits, and information sets. Oil companies in the North Dakota Bakken

Shale learned to more efficiently use fracking technology between 2005-2011, increasing their cap-

ture of possible profits from 15.7% to 67.6% by making improved fracking design choices over

time. Contrary to the predictions of most theoretical models of learning, I do not find evidence

that firms actively experiment in order to learn. Instead, firms prefer fracking input choices with

lower variance, and are willing to give up $0.60-0.98 in expected profits for a reduction of $1 in

the standard deviation of profits. Finally, firms in my data appear to overweight data from their

own operations relative to the data they observe from their competitors.

From a neoclassical economics perspective, it is surprising that these firms do not experiment,

even though it is valuable to do so. They operate in an industry known for its appetite for risk

and use of advanced technology and have access to a wealth of data to learn from. However, they

leave money on the table. Across the 2,699 wells in this data, the average well appears to forego

$12.1 million in profits on an ex post basis and $7.6 million on an ex ante basis, resulting in $20-33

billion in lost profits.

These results complement recent work by petroleum engineers on their own failures to learn

to use to new technologies in a variety of contexts. Authors in this literature note that explicit

learning efforts like experiments do happen, but less frequently and later in the development of a

formation than they should.45 Much of this research cites two hurdles to learning: a tendency by

operators to prematurely focus their optimization efforts on cost reductions instead of improve-

ments in operational choices, and the absence of incentive contracts between operators and their

service contractors. The first phenomenon suggests that operators believe they know the produc-

tion function with high certainty, but later discover their beliefs were wrong. In future work, I

plan to incorporate this possiblity into my model of input choice under uncertainty. The second

phenomenon raises important questions about the effects of contractual incompleteness on the oil

and gas exploration industry that I hope to study in future work.

45For a detailed overview of this literature, see Vincent (2012)
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A Likelihood Calculation

A.1 Step 1

Let θ = (α, β, δ, η) represent the vector of the non-fracking parameters and let φ = (σε, σν) rep-

resent the vector of the variance parameters. I compute the pseudo-observation gi from (Yit, Xit),
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conditional on θ as

gi =
1

Ni

Ni∑
t=1

(log Yit −Xitθ)

=
1

Ni

Ni∑
t=1

(g(Zi) + εi + νit)

= f(Zi) + εi +
1

Ni

Ni∑
t=1

νit

gi is the sum of the “true” effect of fracking and location on oil production and a normally dis-

tributed error with zero mean and variance σ2
ε + 1

Ni
σ2
ν .

A.2 Step 2

Conditional on the pseudo-observations gi, the likelihood of (Yit, Xit) follows the standard formula

for panel data with a random effect on each well. Let ψ(· | µ, σ) denote the normal likelihood

with mean µ and standard deviation σ and let eit = log Yit − Xitθ. Finally, let bolded capital

letters represent vectors of the time series of a variable. The log-likelihood of observing (Yi,Xi)

conditional on the parameters (θ, φ) and the unobserved impact of fracking gi is

logL(Yi,Xi | gi, θ, φ) = log

[∫
ψ(εi | 0, σε)

Ti∏
t=1

ψ(eit − gi − εi | 0, σν)dεi

]

= −1

2

 1

σ2
ν

 Ti∑
t=1

(eit − gi)2 −
σ2
ε

Tiσ2
ε + σ2

ν

(
Ti∑
t=1

eit − gi

)2


− 1

2

[
log

(
Ti
σ2
ε

σ2
ν

+ 1

)
+ Ti log

(
2πσ2

ν

)]
, which simplfies to

= −1

2

[
log Ti +

∑
t e

2
it − 1

Ti
(
∑

t eit)
2

σ2
ν

+ (Ti − 1) (2 log σν + log (2π))

]

+ logψ

(
gi |

1

Ti

Ti∑
t=1

eit, σ
2
ε +

1

Ti
σ2
ν

)

= log J(Yi,Xi, Ti | θ, φ) + logψ

(
gi |

1

Ti

Ti∑
t=1

eit, σ
2
ε +

1

Ti
σ2
ν

)

The first term does not depend on gi and the second term is simply a normal log-likelihood,

evaluated at gi, the effect of fracking and location for well i. Though gi is unobserved, by the
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properties of GPR, the vector g of gi’s for all N wells is distributed multivariate normal with mean

zero and variance K(Z | γ). Thus, I can integrate over the values of gi to obtain the likelihood in

terms of observable data and parameters. Let T denote the vector of values of Ti, Σ(T, φ) be an N

by N matrix with σ2
ε + 1

Ti
σ2
ν in the i-th diagonal position and zeros elsewhere and let µ(Y,X,T, θ)

be a vector with 1
Ti

∑Ti
t=1 eit in the i-th position. Then the full log-likelihood is:

logL(Y,X,Z) = log

∫
ψ(g | 0, K(Z | γ))

N∏
i=1

L(Yi,Xi | gi, θ, φ)dgi

=
N∑
i=1

log J(Yi,Xi, Ti | θ, φ) + log

∫
ψ(g | 0, K(Z | γ))ψ(g | µ(Y,X,T, θ),Σ(T, φ))dg

=
N∑
i=1

log J(Yi,Xi, Ti | θ, φ) + logψ (µ(Y,X,T, θ) | 0,Σ(T, φ) +K(Z | γ))

where the last line comes as a result of equations A.7 and A.8 from Rasmussen and Williams

(2005). Having integrated out the unobserved values gi, the full log-likelihood is completely in

terms of the observed data (Y,X,T), the parameter vectors θ and φ, and the covariance matrix

K(Z | γ) of the nonparametric effect of fracking and location on oil production.

B Expected Present Discounted Value of Oil Production

I compute ex post expectations for all wells, and I compute ex ante expectations for wells fracked

by firms with sufficiently large information sets. I require that a firm’s information set has at least

50 wells and at least 300 well-months of production. This limits the set of wells I can analyze, and

the earliest wells with information sets this large do not appear until the fourth quarter of 2007.

I compute E [DOPij] using both expectation operators for a 10 by 10 grid of possible frack

designs j, with sand use between 0 and 650 lbs per foot and water use between 0 and 750 gals per

foot. These grid points cover 95% of observed sand choices and 99% of observed water choices.

By the normality assumptions in the production function model, the joint distribution of log-

production for well i under fracking design j over T months of existence (call this log Ỹij) is
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multivariate normal, with mean µij and covariance Σij given by:

µij = X̃iθ + g̃(Zij)

Σij = X̃iΣ
θX̃>i +

(
σ2
ε + σ2

g,ij

)
1T + σ2

νIT

where X̃i is a matrix of well i’s static characteristics and a vector of log-age values from 1 month

to T months, g̃(·) is the estimated GPR, Zij is the a vector of design (Sj,Wj) and latitude and

longitude for well i, Σθ is the covariance matrix for the estimates of θ, σ2
g,ij is the estimated variance

of the GPR at Zij, 1T is a T by T matrix of ones, and IT is a T by T identity matrix. With this

construction, I am assuming that the variances for ε and ν are estimated perfectly (i.e., there is

no term in Σij that accounts for variance in those estimates).

Because log Ỹij is multivariate normal, the distribution of the level of production over time, Ỹij,

is multivariate log-normal with the same parameters. The mean vector and covariance matrix of

this distribution are:

µ̃ij = exp

(
µij +

1

2
D (Σij)

)
[
Σ̃ij

]
kl

= exp

(
[µij]k + [µij]l +

1

2

(
[Σij]kk + [Σij]ll

)) (
exp

(
[Σij]kl

)
− 1
)

where D(·) represents the diagonal vector of a square matrix and [M ]xy is the (x, y)-th entry of a

matrix M .46 Finally, E [DOPij] is:

E [DOPij] =
T∑
t=1

ρtµ̃ijt

A similar calculation is available for the variance of present discounted oil production:

V [DOPij] = V

[
T∑
t=1

ρtỸijt

]

=
T∑

t1=1

T∑
t2=1

ρt1+t2
[
Σ̃ij

]
t1,t2

46By the properties of the log-normal distribution, the mean and standard deviation of production are closely related, with
the standard deviation equal to the mean times the exponent of the variance minus 1. This means that the “correlation”
between the mean and standard deviation of production, computed across designs j will be positive by construction.
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C Weighted Gaussian Process Estimates

Recall that the mean and variance of the Gaussian process estimates of f at the point Z̃ are given

by:

E
[
f(Z̃) | g,Z, γ

]
= k(Z̃ | γ)>K(γ)−1g

V
[
f(Z̃) | g,Z, γ

]
= k(Z̃ | γ)>K(γ)−1k(Z̃ | γ)

where k(Z̃ | γ) = (k(Z1, Z̃ | γ)...k(ZN , Z̃ | γ))>, K(γ) is the matrix of pairwise kernel distances

for each point in Z and g = (g1...gN)>. To compute a weighted mean and variance, I introduce a

weighting matrix function, L(λ), and compute a weighted estimate of the mean and variance:

E
[
f(Z̃) | g,Z, γ, λ

]
= k(Z̃ | γ)>L(λ)>K(γ)−1g

V
[
f(Z̃) | g,Z, γ, λ

]
= k(Z̃ | γ)>L(λ)>K(γ)−1L(λ)k(Z̃ | γ)

The weighting matrix function L(λ) biases these estimates towards a firm’s own experiences

when λ is closer to 0 and towards other firms’ experiences when λ is closer to 1. In particular,

if (k0(γ), K0(γ), g0) are the subsets of k(γ), K(γ), g computed using only the firm’s own wells,

and (k1(γ), K1(γ), g1) are the subsets computed using only other firms’ wells, then the weighted

estimates satisfy 3 relationships:

1. At λ = 0, the weighted estimates are equal to the estimates computed using the subset of

wells the firm operated:

k(Z̃ | γ)>L(0)>K(γ)−1g = k0(Z̃ | γ)>K0(γ)−1g0

k(Z̃ | γ)>L(0)>K(γ)−1L(0)k(Z̃ | γ) = k0(Z̃ | γ)>K0(γ)−1k0(Z̃ | γ)

2. At λ = 1
2
, the weighted estimates are equal to the unweighted estimates:

k(Z̃ | γ)>L

(
1

2

)>
K(γ)−1g = k(Z̃ | γ)>K(γ)−1g

k(Z̃ | γ)>L

(
1

2

)>
K(γ)−1L

(
1

2

)
k(Z̃ | γ) = k(Z̃ | γ)>K(γ)−1k(Z̃ | γ)
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3. At λ = 1, the weighted estimates are equal to the estimates computed using the subset of

wells the firm did not operate:

k(Z̃ | γ)>L(1)>K(γ)−1g = k1(Z̃ | γ)>K1(γ)−1g0

k(Z̃ | γ)>L(1)>K(γ)−1L(1)k(Z̃ | γ) = k1(Z̃ | γ)>K1(γ)−1k1(Z̃ | γ)

At intermediate values of λ, L(λ) interpolates between these extremes. To accomplish this,

L(λ) takes this form:

L(λ) =

 L1(λ)In0 L2(λ)K01(γ)K11(γ)−1

L3(λ)K10(γ)K00(γ)−1 L4(λ)In1


where n0 is the number of wells in the firm’s information set that it operated, n1 is the number

of wells that other firms operated, the matrices K00(γ), K01(γ), K10(γ), K11(γ) are submatrices of

K(γ):

K(γ) =

K00(γ) K01(γ)

K10(γ) K11(γ)


and the functions L1, L2, L3, L4 are

L1(λ) = 1 + λ− 2λ2

L2(λ) = −λ+ 2λ2

L3(λ) = 1− 3λ+ 2λ2

L4(λ) = 3λ− 2λ2

Thus, L(λ) is a quadratic interpolation between L(0), which selects out the firm’s own wells, and

L(1), which selects out all other firms’ wells.

D Geology Covariates

In the production function defined in Section 3, the only spatially varying observable characteristics

are the well’s location and the fracking choices its operator makes. However, the North Dakota
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Geological Survey (NDGS) has published maps of potentially relevant geological information. In

this appendix, I describe this data and evaluate its ability to explain oil production. The geology

data explains a small, but statistically significant amount of variation in production, even after

conditioning on a well’s location. However, compared to production function models with location

fixed effects, the explanatory power of geology data is small and the coefficients do not always

have the signs that would be predicted by geology theory.

D.1 Available Data

The quantity of oil that a well draws from depends broadly on three geological factors: the thickness

of the upper and lower Bakken shales, their total organic content, and their thermal maturity.

These three factors describe the quantity of rock in the formation, the fraction of the rock that can

generate oil, and the likelihood that oil generation has occurred, respectively. Fortunately, in 2008,

the North Dakota Geological Survey (NDGS) published maps and GIS shape files documenting

the spatial variation in these characteristics over the area covered by the wells in this paper.47 I

summarize this data in Table 11.

As noted in Section 2, thicker locations in the Bakken have the potential to contain more oil.

Using data from NDGS map GI-59, Panel A of Table 11 shows the mean, standard deviation

and within-township standard deviations of the thickness of the upper, middle, and lower Bakken

members across the wells in this paper. The overall Bakken formation averages 86 feet thick, about

half of which is the middle member. There is large variation in each of the thickness measures

across wells, with the coefficient of variation ranging from 23-40%. However, within a township,

the standard deviations of thickness measures are only 22-31% of the overall standard deviations.

In the upper and lower shales, oil can be generated from the fraction of mass that is organic

(i.e., containing mostly carbon and hydrogen). All else equal, shale that has a higher organic

content has the ability to generate more oil than shale with less organic content. Using data from

NDGS map GI-63, Panel B of Table 11 shows the distribution of organic content in the upper

and lower shales. In the average well, approximately 14% of the mass is organic in both members.

There is limited variation in organic content, overall and within a township. Though not shown in

the table, 99% of wells have 9% or more organic content in the upper shale and, 99% have 9.5%

47These maps are freely available in PDF format at https://www.dmr.nd.gov/ndgs/bakken/bakkenthree.asp. The shape
files are available for purchase from the NDGS.

62



Table 11: Geology Covariates Summary Statistics

Variable Mean Std. Dev Min Max Within Std. Dev

Panel A: Thickness (ft)

Bakken Formation 86.05 24.03 5.00 155.00 5.26
Upper Shale 16.50 3.74 1.00 31.00 1.16
Middle Member 42.39 13.10 2.50 82.50 2.86
Lower Shale 27.64 10.93 2.50 57.50 2.90

Panel B: Total Organic Content (%)

Upper Shale 13.80 2.44 3.00 27.00 1.01
Lower Shale 14.01 2.32 8.50 22.50 1.04

Panel C: Thermal Maturity - Hydrogen Index

Upper Shale 358.10 179.30 75.00 775.00 32.96
Lower Shale 343.27 181.90 25.00 1125.00 65.72

Panel D: Thermal Maturity - S2-TMAX (degrees celsius)

Upper Shale 435.68 5.60 417.50 447.50 1.92
Lower Shale 433.89 10.12 387.50 447.50 2.81

N = 2, 699. Reported Bakken Formation thickness does not exactly add up to the
sum of the thickness of the three members in the data. “Within Std. Dev” is the
standard deviation of the data after subtracting mean values within townships.
Source: NDGS Maps GI-59 and GI-63.

or more in the lower shale. For comparison, the organic content in the Ghawar Field of Saudia

Arabia, the most prolific oil field in history, is only 5%.48

Long term exposure to high temperatures converts organic material into oil. The extent of

exposure is called thermal maturity, and geologists use three categories to describe the thermal

maturity of a rock sample. Thermally immature rock has less exposure than is necessary for

the conversion of organic material into oil. Thermally mature rock has enough exposure for the

conversion of its organic content into oil. Thermally over-mature rock has too much exposure, and

its organic content is converted into natural gas.

In map series GI-63, the NDGS provides two measures of the thermal maturity of the Bakken:

hydrogen index and S2-TMAX. Both measures are collected by heating a rock sample to high

temperatures and measuring the rate of oil expulsion across temperatures. The maximum rate at

which oil is expelled, divided by organic content, gives the hydrogen index. Since hydrogen is one

of the two elements contained in all hydrocarbons, more hydrogen indicates higher hydrocarbon

48See Fox and Ahlbrandt (2002)
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generating potential. Potential oil production is higher for larger values of the hydrogen index,

with thermally mature rock at values as low as 200.49 The temperature of the highest rate of

oil expulsion, called S2-TMAX, is the other laboratory measure of thermal maturity. Thermally

mature rock corresponds to S2-TMAX values between 435 and 460, with higher values in that range

corresponding to higher oil production. Above 460 degrees celsius, oil production is decreasing,

and the rock is thermally over-mature.50

Panel C of Table 11 shows the distribution of the hydrogen indices across wells. The average

well has a hydrogen index suggestive of thermal maturity for both the upper and lower shales,

though approximately 25% of wells are thermally immature. Within a township, the standard

deviations of the hydrogen indices are 18-30% of the overall standard deviations. Panel D shows

the distributions of S2-TMAX. The average well is just at the start of thermal maturity and no wells

are thermally over-mature. Over 80% of wells have S2-TMAX in the range of thermal maturity in

the upper shale, and 53% in the lower shale. Within a township, the standard deviations of the

S2-TMAX values are 29-34% of the overall standard deviations.

The NDGS developed these maps using the cuttings, cores and well logs that operators are

legally required to submit for every well they drill to the NDIC.51 Since the NDIC makes these

samples and logs available to anyone, the information content in these maps may have been known

by market participants before they were published.

Opportunities to measure the thickness, total organic content or thermal maturity of the rock

in a specific well are infrequent.52 Furthermore, only in the last few years have geologists began

to study the use of these cuttings in providing information about well quality.53 Even if these

techniques had been available (and in widespread use), they would only provide information about

the middle Bakken member, as that is the predominant source rock for cuttings.

49For more information, see McCarthy et al. (2011)
50For more information, see McCarthy et al. (2011)
51Recall that “cuttings” are the returned rock samples generated during the drilling process. Occaisionally operators also

preserve contiguous sections of undrilled rock, called “cores”. By North Dakota Century Code 38-08-04, Section 43-02-03-
38.1, operators are required to send physical samples of cuttings and cores to the NDGS within 90 days of collection, where
they can be publically observed and analyzed by anyone. Additionally, operators are required to submit copies of all well
logs and geology tests they perform.

52For example, Pimmel and Claypool (2001) notes that “rock eval pyrolysis is not normally used to make real-time drilling
decisions because of the lengthy sample preparation, running, and interpretation time.”

53See, for example, Ortega et al. (2012)
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D.2 Explanatory Power

To evaluate the ability of these geology covariates to explain oil production, I estimate Cobb-

Douglas production function models with and without them. Table 12 shows these results. Column

1 is a specification with no township fixed effects and no geology covariates (i.e., it is a simplification

of the results in Colum 2 of Table 6). In Column 2, I add the township fixed effects, increasing

the between R-squared from 0.600 to 0.813, suggesting that location-specific factors explain a

large portion of variation in production. Next, column 3 shows a specification with the geology

covariates but no township fixed effects. Compared to Column 1, the between R-squared increases

by 0.083 to 0.683. The coefficients on 6 of the 8 geology covariates are significantly different from

zero and a Wald test rejects the hypothesis that the coefficients on the geology covariates are

jointly equal to 0 at the 1% level. However, after conditioning on location, the geology covariates

have considerably less explanatory power. Column 4 shows a specification with both township

fixed effects and geology covariates. The increase in R-squared values from Column 2 to Column 4

is only 0.003, and only 2 of the 8 coefficients on the geology covariates are statistically significant.

Again, a Wald test rejects the hypothesis that the geology covariates are jointly equal to zero.

These results show that geology covariates do explain some of variation in oil production, but very

little compared to the location fixed effects.

Geology theory predicts that the coefficients on each of these covariates should be positive,

as greater thickness, organic content and thermal maturity are all thought to be associated with

higher oil production. However, the coefficient on organic content in the upper Bakken shale is

negative and statistically significant in both specifications.

The inclusion of geology covariates does not meaningfully change the Cobb-Douglas estimates

of the productivity of lateral length, sand or water, as the coefficients in columns 2 and 4 are nearly

identical.

E Stability of the Production Function Relationship

In order for firms to empirically learn the production function for fracking, the true relationship

between oil production, fracking inputs and location must be stable over time. To verify whether

the data is consisent with a stable production function, I examine the performance of wells in
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Table 12: Explanatory Power of Geology Covariates

Coefficient (1) (2) (3) (4)
Log Oil Log oil Log Oil Log Oil

β -0.557 -0.557 -0.557 -0.557
(0.00237) (0.00237) (0.00237) (0.00237)

δ 1.755 1.754 1.755 1.754
(0.00355) (0.00354) (0.00355) (0.00354)

η 0.436 0.798 0.549 0.795
(0.0370) (0.0373) (0.0358) (0.0374)

κS 0.233 0.158 0.200 0.155
(0.0187) (0.0161) (0.0172) (0.0161)

κW 0.0521 0.115 0.106 0.115
(0.0200) (0.0163) (0.0182) (0.0163)

κTU 0.0400 0.0000848
(0.00333) (0.00744)

κTL -0.00205 -0.00218
(0.00114) (0.00299)

κCU -0.0494 -0.0350
(0.00530) (0.00915)

κCL 0.0531 0.00718
(0.00524) (0.00960)

κHU 0.00129 0.000441
(0.000115) (0.000268)

κHL 0.0000825 0.0000323
(0.0000991) (0.000134)

κSU 0.00875 0.0139
(0.00317) (0.00446)

κSL 0.0153 0.00212
(0.00144) (0.00337)

Overall R2 0.690 0.784 0.728 0.785
Between R2 0.600 0.813 0.683 0.816
Within R2 0.765 0.765 0.765 0.765
Township Fixed-effects X X

Standard errors in parentheses. GLS random efffects estimates of the production function model:

log Yit = α+ β log t+ δ logDit + η logHi + κZi + τi + εi + νit

Yit is oil production for well i when it is t months old, Dit is the number of days producing, Hi is the
horizontal length, and Zi is the vector of log sand use Si, log water use Wi, upper Bakken thickness (TU),
lower Bakken thickness (TL), upper Bakken organic content (CU), lower Bakken organic content (LU),
upper Bakken hydrogen index (HU), lower Bakken hydrogen index (HL), upper Bakken S2-TMAX (SU)
and lower Bakken S2-TMAX (SL), and τi is a set of township fixed effects. “Between” R2 is the R2 for
the average predicted log baseline production. “Within” R2 is the R2 for the predicted time series of
production. Estimated off of all 2, 699 wells and 91, 783 well-months.
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similar locations that are fracked with similar designs but in different time periods. If similar wells

fracked in different time periods have different performance, on average, then its possible that the

production function is not stable over time.

To implement this test, I estimate two time varying production function specifications and

conduct Wald tests of the hypothesis that the time effects are jointly equal to zero. In the first

specification, I assume that baseline production is Cobb-Douglas with time-varying coefficients.

If the true production function is both Cobb-Douglas and stable, the coefficients should not vary

over time. In the second specification, I assume that baseline production is the sum of a year fixed

effect and a fixed effect for wells with similar input choices and locations. To do this, I form groups

of wells that have the same deciles of sand and water use that are also in the same township. Thus,

this specification allows for a non-parametric relationship between baseline production, location

and inputs. If the true production function is not Cobb-Douglas, but still constant over time, the

time fixed effects should equal zero.

Table 13 shows the results of these tests. The specifications in columns 1-3 are Cobb-Douglas

in lateral length, sand use and water use, with time fixed effects and time fixed effects interacted

with the sand and water use coefficients.54 Column 1 shows estimates computed from the whole

sample. Wells in the 2009 and 2010 cohorts are significantly more productive than wells in the

earlier cohorts, and wells in the 2009 cohort are significantly less sensitive to water use than wells

in earlier cohorts. Column 2 shows estimates computed from the set of wells that are in bins

with 2 or more wells. In this specification, wells in 2009 and 2010 are also more productive than

earlier wells, while wells in 2011 are less productive. Wells in 2010 and 2011 are less sensitive to

sand use than ealier wells, and wells in 2011 are more sensitive to water use. Column 3 shows

estimates computed from the set of wells that are in bins with 2 or more wells fracked in two

or more years. Wells in 2010 are more productive than earlier wells, while wells in 2011 are less

productive. In this specification, none of the interaction terms are significantly different from zero.

In all 3 specifications, a Wald test of the hypothesis that the year effects and their interactions are

jointly equal to zero is rejected at the 1% level. These parametric results suggest that if the true

production technology is similar to Cobb-Douglas, then it’s parameters may not be constant over

time.
54Because there are only 124 wells fracked between 2005 and 2007, I include them in the 2008 cohort, and specify year

dummies for the 2009, 2010 and 2011 cohorts.
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Table 13: Stability of Production Function Estimates Over Time

Coefficient (1) (2) (3) (4) (5) (6)
Log Oil Log Oil Log Oil Log Oil Log Oil Log Oil

β -0.557 -0.557 -0.573 -0.557 -0.557 -0.573
(0.00237) (0.00297) (0.00405) (0.00237) (0.00297) (0.00405)

δ 1.754 1.797 1.846 1.753 1.796 1.846
(0.00354) (0.00452) (0.00633) (0.00355) (0.00453) (0.00633)

η 0.761 0.734 0.708 0.850 0.847 0.801
(0.0399) (0.0561) (0.0728) (0.0680) (0.0683) (0.0825)

κS 0.159 0.177 0.171
(0.0318) (0.0390) (0.0621)

κW 0.150 0.114 0.107
(0.0386) (0.0446) (0.0690)

κ09 0.785 0.721 0.645 -0.0236 -0.0224 -0.0232
(0.218) (0.282) (0.354) (0.0473) (0.0475) (0.0476)

κ10 0.706 0.732 1.005 -0.124 -0.121 -0.119
(0.263) (0.343) (0.412) (0.0589) (0.0592) (0.0597)

κ11 0.0933 -0.892 -1.602 -0.161 -0.155 -0.153
(0.227) (0.334) (0.490) (0.0645) (0.0648) (0.0657)

κS,09 0.0285 0.0253 -0.0186
(0.0408) (0.0496) (0.0644)

κS,10 -0.0621 -0.137 -0.0851
(0.0456) (0.0670) (0.0910)

κS,11 -0.0190 -0.0235 0.147
(0.0423) (0.0776) (0.110)

κW,09 -0.182 -0.177 -0.121
(0.0518) (0.0690) (0.0920)

κW,10 -0.0577 0.000315 -0.118
(0.0523) (0.0830) (0.114)

κW,11 0.00842 0.177 0.116
(0.0469) (0.0838) (0.116)

# Well-months 91,783 50,866 25,939 91,783 50,866 25,939
# Wells 2,699 1,399 708 2,699 1,399 708
Overall R2 0.785 0.805 0.808 0.836 0.827 0.823
Between R2 0.816 0.828 0.846 0.952 0.894 0.888
Within R2 0.765 0.792 0.800 0.765 0.792 0.800
Fixed-Effects Township Township Township Bins Bins Bins
Sample All Bins 1 Bins 2 All Bins 1 Bins 2

Standard errors in parentheses. GLS random efffects estimates of the production function model:

log Yit = α+ β log t+ δ logDit + η logHi + κZi + τi + εi + νit

Yit is oil production for well i when it is t months old, Dit is the number of days producing, Hi is the horizontal length,
and Zi is the vector of log sand use Si, log water use Wi, dummies for the 2009, 2010 and 2011 cohorts, and interactions
between the dummies and log sand use and log water use. τi is a set of fixed effects for townships or bins. “Between”
R2 is the R2 for the average predicted log baseline production. “Within” R2 is the R2 for the predicted time series of
production. “Bins 1” is the sample of wells in bins with 2 or more wells, while “Bins 2” is wells in bins with 2 or more
wells, fracked in 2 or more years.
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Next, columns 4-6 show estimates for the non-parametric specification. Again, column 4 is

estimated on the entire sample, column 5 is estimated on the sample of wells in bins with 2 or

more wells, and column 6 is estimated on the sample of wells in bins with 2 or more wells fracked

in 2 or more years. In these specifications, the later cohorts tend to be less productive than the

earlier cohorts. Wells in the 2010 and 2011 cohorts are significantly less productive than wells

in the 2008. However, a Wald test of the hypothesis that the year effects are jointly equal to

zero cannot be rejected at the 5% level in any of the nonparametric specifications, providing some

support to the idea that the production function is stable over time.

Since the true production function is unlikely to be spatially homogenous or monotonic in sand

and water or, the non-parametric results here may be more relevant.
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