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Abstract

Empirical and experimental evidence suggests different levels of sophistication among

families in the Boston Public School student assignment plan. In this paper, we analyze

the Nash equilibria of the preference revelation game induced by the Boston mechanism

when there are two types of players. Sincere players are restricted to report their true

preferences, while sophisticated players play a best response. We characterize the set of

Nash equilibrium outcomes as the set of stable matchings of an economy with a modi-

fied priority structure, where sincere students lose their priority to sophisticated students.

While there are multiple equilibrium outcomes, a sincere student receives the same assign-

ment in all equilibria. Moreover any sophisticated student weakly prefers her assignment

under the Pareto-dominant Nash equilibrium of the Boston mechanism to her assignment

under the student-optimal stable mechanism, which was recently adopted by BPS for use

starting with 2005-2006 school year.

JEL: C78, D61, D78, I20

∗Department of Economics, Harvard University, Cambridge MA 02138, ppathak@fas.harvard.edu
†Department of Economics, Boston College, Boston MA 02139, sonmezt@bc.edu

1



1 Introduction

In May 2005, Dr. Thomas Payzant, the Superintendent of Boston Public Schools (BPS),

recommended to the public that the existing school choice mechanism in Boston (henceforth

the Boston mechanism) should be replaced with an alternative mechanism that removes the

incentives to “game the system” that handicapped the Boston mechanism.1 The mechanism has

been used by Boston to assign over 75,000 students to school from July 1999 until July 2005.2

Following his recommendation, the Boston School Committee voted to replace the mechanism

in July 2005 and adopt a new mechanism for the 2005-06 school year.

The major difficulty with the Boston mechanism is that students may benefit by submitting

a rank order list that is different from their true underlying preferences over schools. Loosely

speaking, the Boston mechanism attempts to assign as many students as possible to their first

choice school, and only after all such assignments have been made does it consider assignments

of students to their second choices, and so on. If a student is not admitted to her first choice

school, her second choice may be filled with students who have listed it as their first choice.

That is, a student may fail to get a place in her second choice school that would have been

available had she listed that school as her first choice. If a student is willing to take a risk with

her first choice, then she should be careful to rank a second choice that she has a chance of

obtaining.

Some families understand these features of the Boston mechanism and have developed rules

of thumb for how to submit preferences strategically. For instance, the West Zone Parents

Group (WZPG), a well-informed group of approximately 180 members who meet regularly

prior to admissions time to discuss Boston school choice for elementary school (grade K2),

recommends two types of strategies to its members. Their introductory meeting minutes on

10/27/2003 state:

One school choice strategy is to find a school you like that is undersubscribed and

put it as a top choice, OR, find a school that you like that is popular and put it as

a first choice and find a school that is less popular for a “safe” second choice.

Using data on stated choices from Boston Public Schools from 2000-2004, Abdulkadiroğlu,

Pathak, Roth and Sönmez (2006) describe several empirical patterns which suggest that there

1The Boston mechanism is also widely used throughout several US school districts including Cambridge MA,

Charlotte-Mecklenburg NC, Denver CO, Miami-Dade FL, Minneapolis MN, and Tampa-St. Petersburg FL.
2Between September 1989 and July 1999 thousands of students were assigned through another version of the

same mechanism that imposed racial quotas. For the entire history of student assignment in Boston, see page

36 of the Student Assignment Task Force, submitted to Boston School Committee on September 22, 2004.
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are different levels of sophistication among the families who participate in the mechanism. Some

fraction of parents behave as the WZPG suggest and avoid ranking two overdemanded schools

as their top two choices. On the other hand, nearly 20% of students list two overdemanded

schools as their top two choices, and 27% of these students are unassigned by the mechanism.3

This empirical evidence, together with the theoretical arguments in Abdulkadiroğlu and Sönmez

(2003) and the experimental study of Chen and Sönmez (2006) was instrumental in the decision

to replace the Boston mechanism with the student-optimal stable mechanism (Gale and

Shapley 1962).

One of the remarkable properties of the student-optimal stable mechanism is that it is

strategy-proof: truth-telling is a dominant strategy for each student. If families have access

to advice on how to strategically modify their rank order lists from groups like the WZPG or

through family resource centers, they can do no better than by submitting their true preferences

to the mechanism. This feature was an important factor in Superintendent Payzant’s recom-

mendation to change the mechanism. The BPS Strategic Planning team, in their 05/11/2005

dated recommendation to implement a new BPS assignment algorithm, emphasized:4

A strategy-proof algorithm “levels the playing field” by diminishing the harm done

to parents who do not strategize or do not strategize well.

In this paper, we investigate the intuitive idea that replacing the Boston mechanism with

the strategy-proof student-optimal stable mechanism “levels the playing field.” To do so we

consider a model with both sincere and sophisticated families,5 analyze the Nash equilibria of

the preference revelation game induced by the Boston mechanism (or simply the Nash equilib-

ria of the Boston game), and compare the equilibrium outcomes with the dominant-strategy

outcome of the student-optimal stable mechanism. In Proposition 1, we characterize the equi-

librium outcomes of the Boston game as the set of stable matchings of a modified economy

where sincere students lose their priorities to sophisticated students. This result implies that

there exists a Nash equilibrium outcome where each student weakly prefers her assignment

to any other equilibrium assignment. Hence, the Boston game is a coordination game among

sophisticated students.

3When a student is unassigned by the mechanism, they are administratively assigned to a school that is not

on their rank order list.
4See Recommendation to Implement a New BPS Algorithm - May 11, 2005, available online at

http://boston.k12.ma.us/assignment/.
5This is also consistent with the experimental findings of Chen and Sönmez (2006) who have shown that

about 20% of the subjects in the lab utilize the suboptimal strategy of truth-telling under the Boston mechanism.
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We next examine properties of equilibria. While no sophisticated student loses priority to

any other student, some of the sincere students may gain priority at a school at the expense

of other sincere students by ranking the school higher on their preference list. As a result, a

sincere student may still benefit from the Boston mechanism. In Proposition 2, we show that

a sincere student receives the same assignment in all equilibria of the Boston game.

In Proposition 3, we compare the equilibria of the Boston game to the dominant-strategy

outcome of the student-optimal stable mechanism. We show that any sophisticated student

weakly prefers her assignment under the Pareto-dominant Nash equilibrium outcome of the

Boston game over the dominant-strategy outcome of the student-optimal stable mechanism.

When only some of the students are sophisticated, the Boston mechanism gives a clear advan-

tage to sophisticated students provided that they can coordinate their strategies at a favorable

equilibrium. This result might explain why, in testimony from the community about the Boston

mechanism on 06/08/2005, the leader of the WZPG opposed changing the mechanism:

There are obviously issues with the current system. If you get a low lottery number

and don’t strategize or don’t do it well, then you are penalized. But this can be

easily fixed. When you go to register after you show you are a resident, you go to

table B and the person looks at your choices and lets you know if you are choosing

a risky strategy or how to re-order it.

Don’t change the algorithm, but give us more resources so that parents can make

an informed choice.

The position of the WZPG may be interpreted as a desire to maintain their strategic ad-

vantage over sincere students under the Boston mechanism. In a model where all students are

sophisticated, the set of Nash equilibrium outcomes of the Boston game coincides with the set of

stable matchings of the underlying economy (Ergin and Sönmez 2006).6 This theoretical result

would suggest that a transition to the student-optimal stable mechanism will be embraced by

all student groups for it would be in the best interest of all students. In contrast, Proposition

3 may explain why the WZPG did not embrace the transition.

Our last result, Proposition 4, examines what happens when a sincere student becomes

sophisticated. Comparing the Pareto-dominant Nash equilibrium outcomes of the two scenarios,

the student in question is weakly better off when she is sophisticated although each other

sophisticated student weakly prefers that she remained sincere.

6Kojima (2006) extends this result to a model with substitutable priorities (Kelso and Crawford 1981).
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The layout of the paper is as follows. Section 2 defines the model and Section 3 characterizes

the set of equilibrium. Section 4 presents comparative statics and Section 5 concludes. Finally

the Appendix contains the proofs.

2 The Model

In a school choice problem (Abdulkadiroğlu and Sönmez 2003) there are a number of students

each of whom should be assigned a seat at one of a number of schools. Each student has a

strict preference ordering over all schools as well as remaining unassigned and each school has

a strict priority ranking of all students. Each school has a maximum capacity.

Formally, a school choice problem consists of:

1. a set of students I = {i1, ..., in},

2. a set of schools S = {s1, ..., sm},

3. a capacity vector q = (qs1
, ..., qsm

),

4. a list of strict student preferences PI = (Pi1, ..., Pin), and

5. a list of strict school priorities π = (πs1
, ..., πsm

).

For any student i, Pi is a strict preference relation over S∪{i} where sPii means student i strictly

prefers a seat at school s to being unassigned. For any student i, let Ri donote the “at least as

good as” relation induced by Pi. For any school s, the function πs : {1, . . . , n} → {i1, . . . , in} is

the priority ordering at school s where πs(1) indicates the student with highest priority, πs(2)

indicates the student with second highest priority, and so on. Priority rankings are determined

by the school district and schools have no control over them. We fix the set of students, the

set of schools and the capacity vector throughout the paper; hence the pair (P, π) denotes a

school choice problem (or simply an economy).

The school choice problem is closely related to the well-known college admissions problem

(Gale and Shapley 1962). The main difference is that in college admissions each school is

a (possibly strategic) agent whose welfare matters, whereas in school choice each school is a

collection of indivisible goods to be allocated and only the welfare of students is considered.

The outcome of a school choice problem, as in college admissions, is a matching. Formally

a matching µ : I → S ∪ I is a function such that

1. µ(i) 6∈ S ⇒ µ(i) = i for any student i, and
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2. |µ−1(s)| ≤ qs for any school s.

We refer µ(i) as the assignment of student i under matching µ.

A matching µ Pareto dominates (or is a Pareto improvement over) a matching ν, if

µ(i)Riν(i) for all i ∈ I and µ(i)Piν(i) for some i ∈ I. A matching is Pareto efficient if it is

not Pareto dominated by any other matching.

A mechanism is a systematic procedure that selects a matching for each economy.

2.1 The Boston Student Assignment Mechanism

The Boston mechanism is by far the most popular mechanism that is used in school districts

throughout the U.S. For any economy, the outcome of the Boston mechanism is determined in

several rounds with the following procedure:

Round 1 : In Round 1, only the first choices of students are considered. For

each school, consider the students who have listed it as their first choice and

assign seats of the school to these students one at a time following their

priority order until there are no seats left or there is no student left who has

listed it as their first choice.

In general, at

Round k : Consider the remaining students. In Round k, only the kth choices

of these students are considered. For each school with still available seats,

consider the students who have listed it as their kth choice and assign the

remaining seats to these students one at a time following their priority order

until there are no seats left or there is no student left who has listed it as his

kth choice.

The procedure terminates when each student is assigned a seat at a school.

The Boston mechanism induces a preference revelation game among students. We refer to this

game as the Boston game.
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2.2 Sincere and Sophisticated Students

We assume that there are two types of students: sincere and sophisticated. Let N, M denote

sets of sincere and sophisticated, respectively. We have N ∪ M = I and N ∩ M = ∅. Sincere

students are unaware about the strategic aspects of the student assignment process and they

simply reveal their preferences truthfully. The strategy space of each sincere student is a

singleton under the Boston game. Each sophisticated student, on the other hand, recognizes

the strategic aspects of the student assignment process, and the support of her strategy space

is all strict preferences over the set of schools plus remaining unassigned. We focus on the

Nash equilibria of the Boston game where only sophisticated students are active players. Each

sophisticated student selects a best response to the other students.

2.3 Stability

The following concept, which plays a central role in the analysis of two-sided matching markets,

will be useful to characterize the Nash equilibria of the Boston game.

A matching µ is stable if

1. it is individually rational in the sense that there is no student i who prefers remaining

unassigned to her assignments µ(i), and

2. there is no student-school pair (i, s) such that,

(a) student i prefers s to her assignment µ(i), and

(b) either school s has a vacant seat under µ or there is a lower priority student j who

nonetheless received a seat at school s under µ.

Gale and Shapley (1962) show that the set of stable matchings is non-empty and there exists a

stable matching, the student-optimal stable matching, that each student weakly prefers to

any other stable matching. We refer the mechanism that selects this stable matching for each

problem as the student-optimal stable mechanism. Dubins and Freedman (1981) and Roth

(1982) show that under the student-optimal stable mechanism for each student, truth-telling is

a dominant strategy.

2.4 An Illustrative Example

Since a student “loses” her priority to students who rank a school higher in their rank order

list, the outcome of the Boston mechanism is not necessarily stable. However, Ergin and
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Sönmez (2006) show that any Nash equilibrium outcome of the Boston game is stable when

all students are sophisticated. Based on this result they have argued that a change from the

Boston mechanism to the student-optimal stable mechanism should be embraced by all students

for it will result in a Pareto improvement. This is not what happened in summer 2005 when

Boston Public Schools gave up the Boston mechanism and adopted the student-optimal stable

mechanism. A simple example provides some insight on the resistance of sophisticated players

to the change of the mechanism.

Example 1. There are three schools a, b, c each with one seat and three students i1, i2, i3. The

priority list π = (πa, πb, πc) and student utilities representing their preferences P = (Pi1 , Pi2, Pi3)

are as follows:

a b c

ui1 1 2 0

ui2 0 2 1

ui3 2 1 0

πa : i2 − i1 − i3

πb : i3 − i2 − i1

πc : i2 − i3 − i1

Students i1 and i2 are sophisticated whereas student i3 is sincere. Hence the strategy space of

each of students i1, i2 is {abc, acb, bac, bca, cab, cba} whereas the strategy space of student i3 is

the singleton {abc}. We have the following 6×6×1 Boston game for this simple example:

abc acb bac bca cab cba

abc (0,0,1) (0,0,1) (1,2,0) (1,2,0) (1,1,1) (1,1,1)

acb (0,0,1) (0,0,1) (1,2,0) (1,2,0) (1,1,1) (1,1,1)

bac (2,0,0) (2,0,0) (0,2,2) (0,2,2) (2,1,2) (2,1,2)

bca (2,0,0) (2,0,0) (0,2,2) (0,2,2) (2,1,2) (2,1,2)

cab (0,0,1) (0,0,1) (0,2,2) (0,2,2) (0,2,2) (0,2,2)

cba (0,0,1) (0,0,1) (0,2,2) (0,2,2) (0,2,2) (0,2,2)

where the row player is student i1 and the column player is student i2.

There are four Nash equilibrium profiles of the Boston game (indicated in boldface) each

with a Nash equilibrium payoff of (1,2,0) and a Nash equilibrium outcome of

µ =

(

i1 i2 i3

a b c

)

.

We have the following useful observations about the equilibria:
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1. Truth-telling, i.e. the profile (bac, bca, abc), is not a Nash equilibrium of the Boston game.

2. Unlike in Ergin and Sönmez (2006), the Nash equilibrium outcome µ is not a stable

matching of the economy (P, π). The sincere student i3 not only prefers school b to her

assignment µ(i3) = c but also she has the highest priority there. Nevertheless, by being

truthful and ranking b second, she has lost her priority to student i2 at equilibria.

3. The unique stable matching of the economy (P, π) is

ν =

(

i1 i2 i3

a c b

)

.

Matchings µ and ν are not Pareto ranked. While the sophisticated student i1 is indifferent

between the two matchings, the sophisticated student i2 is better off under matching µ

and the sincere student i3 is better off under matching ν. That is, the sophisticated

student i2 is better off under the Nash equilibria of the Boston game at the expense of

the sincere student i3.

We next characterize the Nash equilibrium outcomes of the Boston game which will be

useful to generalize the above observations.

3 Characterization of Nash Equilibrium Outcomes

Given an economy (P, π), we will construct an augmented economy that will be instrumental

in describing the set of Nash equilibrium outcomes of the Boston game.

Given an economy (P, π) and a school s, partition the set of students I into m sets as

follows:

Is
1 : Sophisticated students and sincere students who rank s as their first choices under P ,

Is
2 : sincere students who rank s as their second choices under P ,

Is
3 : sincere students who rank s as their third choices under P ,

...
...

Is
m: sincere students who rank s as their last choices under P .
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Given an economy (P, π) and a school s, construct an augmented priority ordering π̃s as

follows:

• each student in Is
1 has higher priority than each student in Is

2 , each student in Is
2 has

higher priority than each student in Is
3 , . . . , each student in Is

m−1 has higher priority than

each student in Is
m, and

• for any k ≤ m, priority among students in Is
k is based on πs.

Define π̃ = (π̃s)s∈S. We refer the economy (P, π̃) as the augmented economy.

Example 1 continued. Let us construct the augmented economy for Example 1. Since only

student i3 is sincere, π̃ is constructed from π by pushing student i3 to the end of the priority

ordering at each school except her top choice a (where she has the lowest priority to begin

with):

πa : i2 − i1 − i3 ⇒ π̃a : i2 − i1 − i3

πb : i3 − i2 − i1 ⇒ π̃b : i2 − i1 − i3

πc : i1 − i3 − i2 ⇒ π̃c : i1 − i2 − i3

The key observation is that the unique Nash equilibrium outcome µ of the Boston game is the

unique stable matching for the augmented economy (P, π̃).

While the uniqueness is specific to the above example, the equivalence is general. We are

ready to present our first result.

Proposition 1: The set of Nash equilibrium outcomes of the Boston game under (P, π) is

equivalent to the set of stable matchings under (P, π̃).

Therefore at Nash equilibria sophisticated students gain priority at the expense of sincere

students. Another implication of Proposition 1 is that the set of equilibrium outcomes inherits

some of the properties of the set of stable matchings. In particular there is a Nash equilibrium

outcome of the Boston game that is weakly preferred to any other Nash equilibrium outcome by

all students. We refer this outcome as the Pareto-dominant Nash equilibrium outcome.

Hence the Boston game is a coordination game among sophisticated students.
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Equilibrium Assignments of Sincere Students

The student-optimal stable mechanism replaced the Boston mechanism in Boston in 2005. In

the following section we will compare the equilibrium outcomes of the Boston game with the

dominant-strategy equilibrium outcome of the student-optimal stable mechanism. One of the

difficulties in such comparative static analysis is that the Boston game has multiple equilibria

in general. Nevertheless, as we present next, multiplicity is not an issue for sincere students.

Proposition 2: Let µ, ν be both Nash equilibrium outcomes of the preference revelation game

induced by the Boston mechanism. For any sincere student i ∈ N , µ(i) = ν(i).

While sincere students are only passive players under the Boston game, their outcome

depends on the strategy choices of all students. Nevertheless, as we present in Proposition 2,

equilibrium choice in Boston game has no bite on the assignment of a sincere student. Although

her assignment depends on the strategy choices of the sophisticated students, it does not depend

on which equilibrium strategy is played.7

4 Comparative Statics

4.1 Comparing Mechanisms

The outcome of the student-optimal stable mechanism can be obtained with the following

student-proposing deferred acceptance algorithm (Gale and Shapley 1962):

Step 1 : Each student proposes to her first choice. Each school tentatively

assigns its seats to its proposers one at a time following their priority order.

Any remaining proposers are rejected.

In general, at:

Step k : Each student who was rejected in the previous step proposes to her

next choice. Each school considers the students it has been holding together

with its new proposers and tentatively assigns its seats to these students one

at a time following their priority order. Any remaining proposers are rejected.

7Proposition 2 does not require that sincere students report their true preferences to the mechanism. The

same result is true when sincere students play any fixed strategy.
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The algorithm terminates when no student proposal is rejected and each stu-

dent is assigned her final tentative assignment. Any student who is not holding

a tentative assignment remains unassigned.

4.1.1 Comparing Mechanisms for Sincere Students

Sincere students lose priority to sophisticated students under the Boston mechanism. They

may also be affected by other sincere students, so that some sincere students may benefit at

the expense of other sincere students under the Boston mechanism. More precisely, a sincere

student may prefer the Boston mechanism to the student-optimal stable mechanism since:

• she gains priority at her first choice school over sincere students who rank it second or

lower, and in general

• she gains priority at her kth choice school over sincere students who rank it (k + 1)th or

lower, etc.

Example 2. There are three schools a, b, c each with one seat and three sincere students

i1, i2, i3. Preferences and priorities are as follows:

Pi1 : a b c

Pi2 : a b c

Pi3 : b a c

πa : i1 − i2 − i3

πb : i2 − i2 − i3

πc : i1 − i2 − i3

Outcomes of the Boston mechanism and the student-optimal stable mechanism are
(

i1 i2 i3

a c b

)

and

(

i1 i2 i3

a b c

)

,

respectively. Under the Boston mechanism the sincere student i3 gains priority at her top

choice school b over the sincere student i2. Hence student i3 prefers her assignment under the

Boston mechanism whereas student i2 prefers her assignment under the student-optimal stable

mechanism.

4.1.2 Comparing Mechanisms for Sophisticated Students

Unlike a sincere student, a sophisticated student may be assigned seats at different schools at

different equilibrium outcomes of the Boston game. Hence we will concentrate on the Pareto-

dominant Nash equilibrium outcome of the Boston game.
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Proposition 3: The school a sophisticated student receives in the Pareto-dominant equilibrium

of the Boston mechanism is weakly better than her dominant-strategy outcome under the

student-optimal stable mechanism.

While the Boston mechanism is easy to describe, it induces a complicated coordination

game among sophisticated students. Therefore, it is important to be cautious in interpreting

Proposition 3. The result relies on sophisticated students and their families being able to

reach the Pareto-dominant Nash equilibrium outcome. In a school district where this is a good

approximation, sophisticated students may prefer keeping the Boston mechanism in order to

capitilize on their strategic advantage.

4.2 Becoming Sophisticated

Our final result concerns a sincere student i who becomes sophisticated. While student i weakly

benefits from this transition under the Pareto-dominant Nash equilibrium of the Boston game,

students who have been sophisticated weakly suffer.

To state this result, we must define additional notation. First, fix an economy (P, π). Let

M1 ⊂ I be the set of sophisticated students and N1 be the set of sincere students. Next consider

an initially sincere student i ∈ N1 and suppose she becomes sophisticated. Let M2 = M1 ∪ {i}

be the set of sophisticated students including i, and let N2 = N1 \ {i} be the set of remaining

sincere students.

Let νI be the Pareto-dominant Nash equilibrium of the Boston game where M1 and N1

are the sophisticated and sincere players, respectively. Let µI be the Pareto-dominant Nash

equilibrium of the Boston game where M2 and N2 are the sophisticated and sincere players

respectively.

Proposition 4: Let i, M1, ν
I , µI be as described above. Student i weakly benefits from be-

coming sophisticated in the Pareto-dominant Nash equilibrium of the Boston game, whereas

all other sophisticated students weakly suffer. That is,

µI(i) Ri ν
I(i) and νI(j) Rj µI(j) for all j ∈ M1.

This proposition suggests that groups such as the West Zone Parents Group do not exist

only to share information on how to become strategic because educating a sincere player will

not benefit an existing sophisticated player. Rather, this proposition suggests that the the-

oretical function of the West Zone Parents Group may be to coordinate behavior among the

sophisticated players.
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5 Conclusion

Boston Public Schools stated that their main rationale for changing their student assignment

system is that it levels the playing field. They identified a fairness rationale for a strategy-

proof system. In this paper, we examined this intuitive notion and showed that the Boston

mechanism favors strategic parents at Pareto-dominant Nash equilibrium, providing formal

support for BPS’s position.

Despite its theoretical weaknesses, poor performance in laboratory experiments, and em-

pirical evidence of suboptimal play, the Boston mechanism is the most widely used school

choice mechanism in the United States. This paper proposes another theoretical rationale for

abandoning the mechanism based on fairness or equal access, which was central in Boston’s

decision.

It is remarkable that such a flawed mechanism is so widely used throughout school districts.

Chubb and Moe (1999) argue that important stakeholders often control the mechanisms of

reform in education policy. In the context of student assignment mechanisms, the important

stakeholders may be sophisticated parents who have invested energy in learning about the

mechanism, and the choice of the Boston mechanism may reflect their preferences.

Appendix: Proofs

Proof of Proposition 1:

⇐ (Any stable matching under (P, π̃) is an equilibrium outcome of the Boston game under

(P, π)):

Fix an economy (P, π) and let µ be stable under (P, π̃). Let preference profile Q be such

that Qi = Pi for all i ∈ N and µ(i) is the first choice under Qi for all i ∈ M . Matching µ is

stable under (Q, π̃) as well. Let ν be the outcome of the Boston mechanism under (Q, π). We

first show, by induction, that ν = µ.

Consider any student j who does not receive her first choice s1
j under Q at matching µ.

By construction of Q, student j is naive. Since µ is stable under (Q, π̃) and since student j

does not lose priority to any student at school s1
j when priorities change from π to π̃, she has

lower priority under πs1
j

than any student who has received a seat at s1
j under µ. Each of these

students rank s1
j as their first choices under Q and school s1

j does not have empty seats under µ

for otherwise (j, s) would block µ under (Q, π̃). Therefore ν(j) 6= s1
j . So a student can receive

her first choice under Q at matching ν only if she receives her first choice under Q at matching

µ. But then, since the Boston mechanism is Pareto efficient, matching ν is Pareto efficient
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under (Q, π) which in turn implies that ν(i) = µ(i) for any student i who receives her first

choice under Q at matching µ.

Next given k > 1, suppose

1. any student who does not receive one of her top k choices under Q at matching µ does

not receive one of her top k choices under Q at matching ν either, and

2. for any student i who receives one of her top k choices under Q at matching µ, ν(i) = µ(i).

We will show that the same holds for (k + 1) and this will establish that ν = µ. Consider

any student j who does not receive one of her top k + 1 choices under Q at matching µ. By

construction of Q, student j is naive and by assumption she does not receive one of her top k

choices under Q at matching ν. Consider (k + 1)th choice sk+1
j of student j under Qj . Since µ

is stable under (Q, π̃), there is no empty seat at school sk+1
j for otherwise pair (j, sk+1

j ) would

block matching µ under (Q, π̃). Moreover since µ is stable under (Q, π̃), for any student i with

µ(i) = sk+1
j one of the following three cases should hold:

1. i ∈ M and by construction sk+1
j is her first choice under Qi,

2. i ∈ N and sk+1
j is one of her top k choices under Qi,

3. i ∈ N , she has ranked sk+1
j as her (k + 1)th choice under Qi, and she has higher priority

than j under πsk+1

j
.

If either of the first two cases holds, then ν(i) = sk+1
j by inductive assumption. If Case 3

holds, then student i has not received one of her top k choices under Qi at matching ν by

the inductive assumption and furthermore she has ranked school sk+1
j as her (k + 1)th choice

under Qi. Since she has higher priority than j under πsk+1

j
, ν(j) = sk+1

j implies ν(i) = sk+1
j .

Therefore considering all three cases, ν(j) = sk+1
j implies ν(i) = sk+1

j for any student i with

µ(i) = sk+1
j and since school sk+1

j does not have empty seats under µ, ν(j) 6= sk+1
j . So a student

can receive one of her top k + 1 choices under Q at matching ν only if she receives one of her

top k + 1 choices under Q at matching µ. Moreover matching ν is Pareto efficient under (Q, π)

and therefore ν(i) = µ(i) for any student i who receives her (k + 1)th choice under Qi at µ

completing the induction and establishing ν = µ.

Next we show that Q is a Nash equilibrium profile and hence ν is a Nash equilibrium

outcome. Consider any sophisticated student i ∈ M and suppose sPiν(i) = µ(i) for some

school s ∈ S. Since ν = µ is stable under (Q, π̃) and since student i gains priority under π̃s over
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only students who rank s second or worse under Q, not only any student j ∈ I with ν(j) = s

ranks school s as her first choice under Qi but she also has higher priority under πs. Therefore

regardless of what preferences student i submits, each student j ∈ I with ν(j) = s will receive

a seat at school s. Moreover by stability of ν = µ under (Q, π̃) there are no empty seats at

school s and hence student i cannot receive a seat at s regardless of her submitted preferences.

Therefore matching ν is a Nash equilibrium outcome.

⇒ (Any equilibrium outcome of the Boston game under (P, π) is a stable matching under

(P, π̃)):

Suppose matching µ is not stable under (P, π̃). Let Q be any preference profile where

Qi = Pi for any naive student i and where µ is the outcome of the Boston mechanism under

(Q, π). We will show that Q is not a Nash equilibrium strategy profile of the Boston game

under (P, π).

First suppose µ is not individually rational under (P, π̃). Then there is a student i ∈ I with

iPiµ(i). Since the Boston mechanism is individually rational, student i should be a sophisticated

student who has ranked the unacceptable school µ(i) as acceptable. Let P 0
i be a preference

relation where there is no acceptable school. Upon submitting P 0
i , student i will profit by

getting unassigned. Hence Q cannot be an equilibrium profile in this case.

Next suppose there is a pair (i, s) that blocks µ under (P, π̃). Since µ is the outcome of the

Boston mechanism under (Q, π), student i cannot be a naive student. Let P s
i be a preference

relation where school s is the first choice. We have two cases to consider:

Case 1 : School s has an empty seat at µ.

Recall that by assumption µ is the outcome of the Boston mechanism under (Q, π). Since s

has an empty seat at µ, there are fewer students who rank s as their first choice under Q than

the capacity of school s. Therefore upon submitting the preference relation P s
i , student i will

profit by getting assigned a seat at school s. Hence Q cannot be an equilibrium profile.

Case 2 : School s does not have an empty seat at µ.

By assumption µ is the outcome of the Boston mechanism under (Q, π) and there is a

student j with µ(j) = s although i has higher priority than j under π̃s. If school s is not j’s

first choice under Qj then there are fewer students who rank s as their first choice under Q

than the capacity of school s, and upon submitting the preference relation P s
i , student i will

profit by getting assigned a seat at school s contradicting Q being an equilibrium profile. If

on the other hand school s is j’s first choice under Qj , then either j is sophisticated or j is

naive and s is her first choice under Pj. In either case i having higher priority than j under

π̃s implies i having higher priority than j under πs. Moreover since µ(j) = s, the capacity of
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school s is strictly larger than the number of students who both rank it as their first choice

under Q and also has higher priority than j under πs. Therefore the capacity of school s is

strictly larger than the number of students who both rank it as their first choice under Q and

also has higher priority than i under πs. Hence upon submitting the preference relation P s
i ,

student i will profit by getting assigned a seat at school s contradicting Q being an equilibrium

profile.

Since there is no Nash equilibrium profile Q for which µ is the outcome of the Boston

mechanism under (Q, π), µ cannot be a Nash equilibrium outcome of the Boston game under

(P, π). 2

Proof of Proposition 2: Fix an economy (P, π). Let µ, ν be both Nash equilibrium outcomes

of the preference revelation game induced by the Boston mechanism. By Proposition 1, µ, ν

are stable matchings under (P, π̃). Let µ = µ ∨ ν and µ = µ ∧ ν be the join and meet of the

stable matching lattice. That is, µ, µ are such that, for all i ∈ I,

µ(i) =

{

µ(i) if µ(i)Riν(i)

ν(i) if ν(i)Riµ(i)
µ(i) =

{

ν(i) if µ(i)Riν(i)

µ(i) if ν(i)Riµ(i)

Since the set of stable matchings is lattice (attributed to John Conway by Knuth 1976), µ and

µ are both stable matchings under (P, π̃).

Let T = {i ∈ I : µ(i) 6= µ(i)}. That is, T is the set of students who receive a different

assignment under µ and µ. If T ⊆ M , then we are done. So suppose there exists i ∈ T ∩ N .

We will show that this leads to a contradiction. Let s = µ(i), s∗ = µ(i), and j ∈ µ−1(s∗) ∩ T .

Such a student j ∈ I exists because by the rural hospitals theorem of Roth (1985) the same

set of students and the same set of seats are assigned under any pair of stable matchings. Note

that j ∈ µ−1(µ(i)).

Claim: j ∈ N .

Proof of the Claim: By construction of µ and µ, sPis
∗ and therefore school s∗ is not i’s first

choice. Moreover by Roth and Sotomayor (1989) each student in µ(s∗)\µ(s∗) has higher priority

under π̃s∗ than each student in µ(s∗) \ µ(s∗), and hence i has higher priority than j under π̃s∗ .

But since i is naive by assumption and since s∗ is not her first choice, student j has to be naive

as well for otherwise she would have higher priority under π̃s∗ . ♦

Next construct the following directed graph: Each student i ∈ T ∩N is a node and there is

a directed link from i ∈ T ∩ N to j ∈ T ∩ N if j ∈ µ−1(µ(i)). By the above Claim there is at

least one directed link emanating from each node. Therefore, since there are finite number of
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nodes, there is at least one cycle in this graph. Pick any such cycle. Let T1 ⊆ T ∩N be the set

of students in the cycle, and let |T1| = k. Relabel students in T1 and their assignments under

µ, µ so that the restriction of matchings µ and µ to students in T1 is as follows:

µT1
=

(

i1 i2 ... ik

s1 s2 ... sk

)

µ
T1

=

(

i1 i2 ... ik−1 ik

s2 s3 ... sk s1

)

Note that a school may appear more than once in a cycle so that schools st, su does not need

to be distinct for t 6= u (although they would have if the cycle we pick is minimal). This has

no relevance for the contradiction we present next.

Let ri,s be the ranking of school s in Pi (so ri,s = ℓ means that s is i’s ℓth choice). By Roth

and Sotomayor (1989) ik has higher priority at school s1 than i1 under π̃s1 , and since i1, ik are

both naive,

rik,s1 ≤ ri1,s1

Similarly

ri1,s2 ≤ ri2,s2

...

rik−1,sk ≤ rik ,sk

Moreover since µ(i)Piµ(i) for each i ∈ T ,

s1Pi1s
2 ⇒ ri1,s1 < ri1,s2

s2Pi2s
3 ⇒ ri2,s2 < ri2,s3

...

sk−1Pik−1sk ⇒ rik−1,sk−1 < rik−1,sk

skPiks
1 ⇒ rik,sk < rik,s1

Combining the inequalities, we obtain

rik,s1
≤ ri1,s1 < ri1,s2 ≤ ri2,s2 < ri2,s3 ≤ ... ≤ rik−1,sk−1 < rik−1,sk ≤ rik,sk < rik,s1

establishing the desired contradiction. Hence there exists no i ∈ N with µ(i) 6= µ(i). But that

means there exists no i ∈ N with µ(i) 6= ν(i) completing the proof. 2

18



The following lemma will be useful to prove Proposition 3 and Proposition 4. We need the

following piece of notation to present this lemma. Given a preference profile P and a school s,

let Fs(P ) denote the set of students who rank school s as their first choice under P .

Lemma 1: Fix a preference profile P , a list of priorities π, and a set of students J ⊂ I. Let

priorities σ be such that, for any school s:

1. any student in J ∪Fs(P ) has higher priority under σs than any student in I \ (J ∪Fs(P )),

and

2. for any student j ∈ J ∪Fs(P ) and any student i ∈ I, if j has higher priority than i under

πs then j also has higher priority than i under σs.

Let µI , νI be the student-optimal stable matching for economies (P, π), (P, σ) respectively.

Then:

νI(j) Rj µI(j) for any j ∈ J.

Proof of Lemma 1: Fix P and J ⊂ I and let priorities π, σ be as in the statement of

the lemma. Let µI , νI be the student-optimal stable matching for economies (P, π), (P, σ)

respectively. Define matching ν0 as follows:

ν0(j) = µI(j) for all j ∈ J,

ν0(i) = i for all i ∈ I \ J.

If ν0 is stable under (P, σ), then each student i ∈ J weakly prefers νI(j) to ν0(j) = µI(j) and

we are done. So w.l.o.g. assume ν0 is not stable under (P, σ). We will construct a sequence of

matchings ν0, ν1, . . . , νk where νk is stable under (P, σ), and

νℓ(j) Rj νℓ−1(j) for all j ∈ J and ℓ ≥ 1.

Consider matching ν0. Since ν0 is not stable but individually rational under (P, σ), there is

a blocking pair. Pick any school s1 in a blocking pair and let i1 be the highest priority student

under σs1 who strictly prefers s1 to her assignment under ν0.

Claim 1: School s1 has an empty seat under ν0.

Proof of Claim 1 : We have three cases to consider.

Case 1 : i1 ∈ J .
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By construction ν0(i
1) = µI(i1) , ν−1

0 (s1) = (µI)−1(s1) ∩ J and (i1, s1) does not block µI

under (P, π). When priorities change from π to σ, no student in J loses priority to student i1

and therefore (i1, s1) can block ν0 under (P, σ) only if school s1 has an empty seat under ν0.

Case 2 : i1 ∈ I \ J and i1 6∈ Fs1(P ).

Student i1 has lower priority under σs1 than any student in J . Since ν−1
0 (s1) ⊆ J , pair

(i1, s1) can block ν0 under (P, σ) only if school s1 has an empty seat under ν0.

Case 3 : i1 ∈ I \ J and i1 ∈ Fs1(P ).

If µI(i1) = s1, then by construction the seat i1 occupies at s1 under µI is empty under ν0.

If µI(i1) 6= s1, then i1 is assigned a seat at a less preferred school and hence all seats at s1 are

occupied under µI by higher priority students under πs1 . Since (i1, s1) blocks ν0 under (P, σ),

at least one of these students must be a student in I \ (J ∪ Fs1(P )). That is because student

i1 gains priority over only these student under σs1 . Since I \ (J ∪ Fs1(P )) ⊆ I \ J , at least one

seat at s1 must be empty under ν0.

This completes the proof of Claim 1. ♦

Construct matching ν1 by satisfying pair (i1, s1) at matching ν0:

ν1(i) = ν0(i) for all i ∈ I \ {i1},

ν1(i
1) = s1

By construction ν1(i) Ri ν0(i) for all i ∈ I. If ν1 is stable under (P, σ), then for all j ∈ J ,

νI(j) Rj ν1(j) Rj ν0(j)
︸ ︷︷ ︸

=µI(j)

and we are done. If not, we proceed with the construction of matching ν2.

In general for any ℓ > 0, if νℓ is not stable under (P, σ) construct νℓ+1 as follows: Pick any

school sℓ+1 in a blocking pair for νℓ and let iℓ+1 be the highest priority student under σsℓ+1 who

strictly prefers sℓ+1 to her assignment under νℓ. As we prove next, school sℓ+1 has an empty

seat under νℓ. Construct matching νℓ+1 by satisfying pair (iℓ+1, sℓ+1) at matching νℓ:

νℓ+1(i) = νℓ(i) for all i ∈ I \ {iℓ+1},

νℓ+1(i
ℓ+1) = sℓ+1

Claim 2: School sℓ+1 has an empty seat under νℓ.

Proof of Claim 2 : We have three cases to consider.
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Case 1 : iℓ+1 ∈ J .

By construction

νℓ(i
ℓ+1) Riℓ+1 ν0(i

ℓ+1)
︸ ︷︷ ︸

=µI (iℓ+1)

and ν−1
ℓ (sℓ+1) ⊆ [(µI)−1(sℓ+1) ∩ J ] ∪ {i1, . . . , iℓ}.

Since (iℓ+1, sℓ+1) does not block µI under (P, π) and since student iℓ+1 does not gain priority

over any student in J when priorities change from π to σ, any student in (µI)−1(sℓ+1) ∩ J

has higher priority than student iℓ+1 under σsℓ+1 . Moreover for any im ∈ {i1, . . . , iℓ} with

im ∈ ν−1
ℓ (sℓ+1), we must have sℓ+1 = sm and thus student im has higher priority than student

iℓ+1 at school sℓ+1 = sm under σsℓ+1 by the choice of blocking pairs. Therefore student iℓ+1 has

lower priority under σsℓ+1 than any student in ν−1
ℓ (sℓ+1) and hence pair (iℓ+1, sℓ+1) can block

νℓ under (P, σ) only if school sℓ+1 has an empty seat at νℓ.

Case 2 : iℓ+1 ∈ I \ J and iℓ+1 6∈ Fsℓ+1(P ).

By construction ν−1
ℓ (sℓ+1) ⊆ J ∪ {i1, . . . , iℓ}. Student iℓ+1 has lower priority under σsℓ+1

than any student in J . Moreover for any im ∈ {i1, . . . , iℓ} with im ∈ ν−1
ℓ (sℓ+1), we must have

sℓ+1 = sm and thus student im has higher priority than student iℓ+1 at school sℓ+1 = sm under

σsℓ+1 by the choice of blocking pairs. Therefore student iℓ+1 has lower priority under σsℓ+1 than

any student in ν−1
ℓ (sℓ+1) and hence pair (iℓ+1, sℓ+1) can block νℓ under (P, σ) only if school sℓ+1

has an empty seat at νℓ.

Case 3 : iℓ+1 ∈ I \ J and school sℓ+1 and iℓ+1 ∈ Fsℓ+1(P ).

Recall that ν−1
ℓ (sℓ+1) ⊆ [(µI)−1(sℓ+1) ∩ J ] ∪ {i1, . . . , iℓ}. First suppose µI(iℓ+1) 6= sℓ+1. For

any im ∈ {i1, . . . , iℓ} with im ∈ ν−1
ℓ (sℓ+1), we must have sℓ+1 = sm and thus student im has

higher priority than student iℓ+1 at school sℓ+1 = sm under σsℓ+1 by the choice of blocking pairs.

Moreover sℓ+1 is iℓ+1’s first choice and yet µI is stable under (P, π). Therefore all students in

(µI)−1(sℓ+1) has higher priority under πsℓ+1 than iℓ+1 does. But student iℓ+1 does not gain

priority at school sℓ+1 over any student in J when priorities change from π to σ. Therefore

any student in (µI)−1(sℓ+1) ∩ J has higher priority under σsℓ+1 than student iℓ+1 does, which

in turn implies any student in ν−1
ℓ (sℓ+1) has higher priority under σsℓ+1 than student iℓ+1 does.

Hence pair (iℓ+1, sℓ+1) can block νℓ under σsℓ+1 only if school sℓ+1 has an empty seat at νℓ.

Next suppose µI(iℓ+1) = sℓ+1. Let im ∈ {i1, . . . , iℓ} be such that im ∈ ν−1
ℓ (sℓ+1). We have

sℓ+1 = sm and since student im has higher priority than student iℓ+1 at school sℓ+1 under σsℓ+1 ,

the same should be true under πsℓ+1 as well. That is because, student iℓ+1 does not lose priority

to any student at school sℓ+1 when priorities change from πsℓ+1 to σsℓ+1 .
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Since pair (im, sm) = (im, sℓ+1) blocks matching νm−1 under (P, σ), and since assignments

only improve as we proceed by the sequence ν0, ν1, . . . , νk,

sℓ+1 Pim νm−1(i
m) Rim ν0(i

m).

So on one hand µI(iℓ+1) = sℓ+1 where iℓ+1 has lower priority at sℓ+1 than im under πsℓ+1, and

on the other hand im strictly prefers sℓ+1 to its assignment under ν0. That means

(1) im ∈ I \ J ,

(2) Im ∈ Fsℓ+1(P ), and

(3) µI(im) = sℓ+1.

(1) holds because im ∈ J would imply ν0(i
m) = µI(im) and in that case pair (im, sℓ+1) would

have blocked matching µI under (P, π). (2) holds because im has higher priority than iℓ+1 at

school sℓ+1 under σsℓ+1 although school sℓ+1 is the first choice of student iℓ+1. (3) holds because

if µI(im) 6= sℓ+1, then by (2) sℓ+1 Pim µI(im) and in that case pair (im, sℓ+1) would have blocked

matching µI under (P, π).

So for each im ∈ ν−1
ℓ (sℓ+1), there is one empty seat at sℓ+1 under ν0. In addition there is

at least one more empty seat, namely the seat student iℓ+1 occupies at school sℓ+1 at matching

µI . Therefore under matching νℓ there must still be at least one empty seat at school sℓ+1.

This covers all three cases and completes the proof of Claim 2. ♦

We are now ready to complete the proof. Since each student weakly prefers and one strictly

prefers matching νℓ to matching νℓ−1 for any ℓ ≥ 0, eventually the sequence terminates which

means no pair blocks the final matching νk in the sequence and thus νk is stable under (P, σ).

Therefore for any student j ∈ J ,

νI(j) Rj νk(j) Rj ν0(j)
︸ ︷︷ ︸

=µI (j)

where the first relation holds by the definition of the student-optimal stable matching. This

completes the proof. 2

Proof of Proposition 3: Let µI , νI be the student-optimal stable matching for economies

(P, π), (P, π̃) respectively. We have to show that νI(j) Rj µI(j) for any j ∈ M . For any school

s, the priority order π̃s is such that:
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1. any student in M∪Fs(P ) has higher priority under π̃s than any student in I\(M∪Fs(P )),

and

2. for any student j ∈ M ∪Fs(P ) and any student i ∈ I, if j has higher priority than i under

πs then j also has higher priority than i under π̃s.

Therefore νI(j) Rj µI(j) for any j ∈ M by Lemma 1. 2

Proof of Proposition 4: Fix an economy (P, π). Let M1 ⊂ I be the set of sophisticated

students and N1 be the set of sincere students. Next consider an initially sincere student

i ∈ N1 and suppose she becomes sophisticated. Let M2 = M1 ∪ {i} be the set of sophisticated

students including i, and let N2 = N1\{i} be the set of remaining sincere students. Let νI be the

Pareto-dominant Nash equilibrium of the Boston game where M1 and N1 are the sophisticated

and sincere players, respectively. Let µI be the Pareto-dominant Nash equilibrium of the

Boston game where M2 and N2 are the sophisticated and sincere players respectively. Let µ̃1

be the augmented priority ordering when M1 is the set of sophisticated students and µ̃2 be the

augmented priority ordering when M2 is the set of sophisticated students. By Proposition 1,

νI is the student-optimal stable matching for economy (P, µ̃1) and µI is the student-optimal

stable matching for economy (P, µ̃2).

By the construction of the augmented priorities, student i does not lose priority to any

student when priorities change from µ̃1 to µ̃2 while priorities between other students remain

the same between µ̃1 and µ̃2. Therefore µI(i) Ri ν
I(i) immediately follows from Balinski and

Sönmez (1999). Moreover by construction of the augmented priorities, for any school s:

1. any student in M1∪Fs(P ) has higher priority under π̃1
s than any student in I\(M1∪Fs(P )),

and

2. for any student j ∈ M1 ∪Fs(P ) and any other student h ∈ I, if j has higher priority than

h under π̃2
s then j also has higher priority than h under π̃1

s .

Therefore νI(j) Rj µI(j) for any j ∈ M1 by Lemma 1. 2
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